Metabolism

Author(s):  
Andrew Clarke

Metabolism is driven by redox reactions, in which part of the difference in potential energy between the electron donor and acceptor is used by the organism for its life processes (with the remainder being dissipated as heat). The key process is intermediary metabolism, by which the energy stored in reserves (glycogen, starch, lipid, protein) is transferred to ATP. In aerobic respiration the electrons released from reserves are passed to oxygen, which is thereby reduced to water. Not all ATP regeneration involves oxygen as the final electron acceptor, and not all oxygen is used for ATP regeneration, but oxygen consumption is often the simplest and most practical way to measure the rate of intermediary metabolism and the errors in doing so are believed to be small. The costs of existence, as estimated by resting metabolism, represent only a part (~ 25%) of the daily energy expenditure of organisms. The costs of the organism’s ecology (growth, reproduction, movement and so on) are additional to existence costs. Resting metabolic rate increases with cell temperature, indicating that it costs more energy to maintain a warm cell than it does a cool or cold cell. The temperature sensitivity of resting metabolism is highly conserved across organisms.

2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.


2009 ◽  
Vol 74 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Ladislav Drož ◽  
Mark A. Fox ◽  
Drahomír Hnyk ◽  
Paul J. Low ◽  
J. A. Hugh MacBride ◽  
...  

Dipole moments were measured for a series of substituted benzenes, biphenyls, terphenyls, C-monoaryl- and C,C′-diaryl-p-carboranes. For the donor–bridge–acceptor systems, Me2N–X–NO2, where X is 1,4-phenylene, biphenyl-4,4′-diyl, terphenyl and 1,4-C6H4-p-CB10H10C-1,4-C6H4, the measured interaction dipole moments are 1.36, 0.74, 0.51 and 0.00 D, respectively. The magnitude of the dipole moment reflects the ability of the bridge to transmit electronic effects between donor and acceptor groups. Thus, whilst the 1,4-phenylene bridges allow moderate electronic interactions between the remote groups, the p-carboranediyl unit is less efficient as a conduit for electronic effects. Averaged dipole moments computed at the DFT (B3LYP/6-31G*) level of theory from two distinct molecular conformers are in good agreement with the experimental values. Examination of the calculated electronic structures provides insight into the nature of the interactions between the donor and acceptor moieties through these 2D and 3D aromatic bridges. The most significant cooperative effect of the bridge on the dipole moment occurs in systems where there is some overlap between the HOMO and LUMO orbitals. This orbital overlap criterion may help to define the difference between “push-pull” systems in which electronic effects are mediated by the bridging moiety, and simpler systems in which the bridge acts as an electronically innocent spacer unit and through-space charge transfer/separation is dominant.


Parasitology ◽  
1995 ◽  
Vol 110 (4) ◽  
pp. 473-482 ◽  
Author(s):  
R. J. Delahay ◽  
J. R. Speakman ◽  
R. Moss

SUMMARYThe timing of the energetic consequences of a developing, single-dose infection of Trichostrongylus tenuis larvae was investigated in captive red grouse Lagopus lagopus scoticus. At 12 days post-infection (p.i.), infected birds had a resting metabolic rate 16% greater than controls and thenceforth lost weight at a faster rate than controls. At 16 days p.i. infected birds consumed 38% less energy and excreted 33% less energy than controls. The estimated total daily energy expenditure and energy expended on activity for infected birds at 16 days p.i. were 36% and 83% lower, respectively, than for controls. Infected birds lost condition from 16 days p.i. onwards. The period of energy imbalance at 12–16 days p.i. coincided with development of late 4th-stage larvae into adult worms and the onset of patency. After this, the effects on energy balance diminished. Synchronous development of previously arrested T. tenuis larvae in wild birds in spring probably has similar effects to those reported here and places grouse under conditions of energy imbalance. The observed effects on energy balance provide a possible mechanism by which the parasite can reduce fecundity and survival of infected grouse.


Nature ◽  
1966 ◽  
Vol 211 (5045) ◽  
pp. 182-183 ◽  
Author(s):  
YOSHIO MATSUNAGA

2017 ◽  
Vol 15 (48) ◽  
pp. 10172-10183 ◽  
Author(s):  
Carl Jacky Saint-Louis ◽  
Renée N. Shavnore ◽  
Caleb D. C. McClinton ◽  
Julie A. Wilson ◽  
Lacey L. Magill ◽  
...  

Methods to tune the luminescence wavelength and the quantum yields by controlling the power and location of electron-donor and acceptor substituents on the ring system.


Sign in / Sign up

Export Citation Format

Share Document