Acoustic Remote Sensing in Maritime Archaeology

Author(s):  
Rory Quinn

This article offers an introduction to acoustic remote sensing. In shipwreck studies, acoustic remote sensing has traditionally been used for reconnaissance surveys and for site relocation. With the advent of higher-resolution sonar systems, the focus in shipwreck studies has shifted toward site reconstruction and studies of site formation. Acoustic systems provide baseline data at rates higher than those of experienced dive teams. This article describes how acoustic data is generated. It describes the profiling methods such as single-beam echo-sounders and sub-bottom profilers, and swath methods such as side-scan sonar and multibeam echo-sounders. The last few years have seen developments of multielement sonar platforms, which allow for the acquisition of true concurrent sonar data sets from one platform. Every phase of development in sonar technology brings an increase in sensors' resolving capability and therefore the ability to image smaller and smaller artifacts in greater detail.

Author(s):  
E. Levin ◽  
G. Meadows ◽  
R. Shults ◽  
U. Karacelebi ◽  
H. S. Kulunk

<p><strong>Abstract.</strong> This paper represents the overview of hydrographic surveying and different types of modern and traditional surveying equipment, and data acquisition using the traditional single beam sonar system and a modern fully autonomous underwater vehicle (AUV) IVER3. During the study, the data sets were collected using the vehicles of the Great Lake Research Center at Michigan Technological University. This paper presents how to process and edit the bathymetric data on SonarWiz5. Lastly, it compares the accuracy of the two different sonar systems in the different missions and creates 3D models to display and understand the elevations changes. Moreover, the 3D models were created after importing the data sets in the same coordinate system. In this study, the data sets were recorded by two different sensors in the two study locations in the Keweenaw Waterway in Michigan, U.S. between the cities of Houghton and Hancock. The first one equipment is the Lowrance HDS-7 sonar on the surveying boat, and other one is the EdgeTech 2205 sonar on the fully AUV of IVER3. One of the purposes of this study is to explore the sonar post processing programs, which are very important to interpret sonar and bathymetric data, and obtained the same coordinate system of the study areas. During the project, three main processing programs were used. The first one is UnderSee Explorer 2.6, which has been used to process the data sets of Polar SV boat. Secondly, EdgeTech Discover 4600 bathymetric software used EdgeTech 2205 sonar data sets to create bathymetric files that were used in SonarWiz5. Lastly, SonarWiz5 sonar processing software can be used to process the data sets. After the data acquisition and the data process, six profiles from the first study area and the five profiles from the second study are created to compare the data sets and elevations difference. It is shown that single beam sonar might miss some details, such as pipeline and quick elevation changes on seabed when we compare to the side scan sonar of IVER3 because the single side scan sonar can acquire better resolutions to understand the 3D features, such as pipelines, reliefs etc.</p>


2009 ◽  
Vol 67 (3) ◽  
pp. 594-605 ◽  
Author(s):  
Victor Quintino ◽  
Rosa Freitas ◽  
Renato Mamede ◽  
Fernando Ricardo ◽  
Ana Maria Rodrigues ◽  
...  

Abstract Quintino, V., Freitas, R., Mamede, R., Ricardo, F., Rodrigues, A. M., Mota, J., Pérez-Ruzafa, Á., and Marcos, C. 2010. Remote sensing of underwater vegetation using single-beam acoustics. – ICES Journal of Marine Science, 67: 594–605. A single-beam, acoustic, ground-discrimination system (QTC VIEW, Series V) was used to study the distribution of underwater macrophytes in a shallow-water coastal system, employing frequencies of 50 and 200 kHz. The study was conducted in Mar Menor, SE Spain, where the expansion of Caulerpa prolifera has contributed to the silting up of the superficial sediments. A direct relationship was identified between algal biomass and sediment-fines content. Acoustic information on sediment grain size and data on algal biomass were obtained in muddy and sandy sediments, including vegetated and non-vegetated seabed. Non-vegetated muddy areas were created by diving and handpicking the algae. The multivariate acoustic data were analysed under the null hypotheses that there were no acoustic differences between bare seabeds with contrasting superficial sediment types or among low, medium, and high algal-biomass areas, having in mind that grain size can act as a confounding factor. Both null hypotheses were rejected, and the results showed that 200 kHz was better than 50 kHz in distinguishing cover levels of algal biomass. The relationship between the 200-kHz acoustic data and algal biomass suggests utility in modelling the latter using the former.


1990 ◽  
Vol 112 (2) ◽  
pp. 96-102 ◽  
Author(s):  
J. M. Cuschieri ◽  
M. Hebert

The generation of three-dimensional (3-D) images and map building are essential components in the development of an autonomous underwater system. Although the direct generation of 3-D images is more efficient than the recovery of 3-D data from 2-D information, at present for underwater applications where sonar is the main form of remote sensing, the generation of 3-D images can only be achieved by either complex sonar systems or with systems which have a rather low resolution. In this paper an overview is presented on the type of sonar systems that are available for underwater remote sensing, and then a technique is presented which demonstrates how through simple geometric reasoning procedures, 3-D information can be recovered from side scan-type (2-D) data. Also presented is the procedure to perform map building on the estimated 3-D data.


2020 ◽  
Author(s):  
Meghan Troup ◽  
David Barclay ◽  
Matthew Hatcher

&lt;p&gt;Benthic surveys in very shallow water (&lt; 1 meter) are often carried out by remote sensing methods such as LiDAR, satellite imagery, and aerial photography, or by written observations paired with GPS point measurements and underwater video. Remote sensing can be helpful for large scale mapping endeavors, but the optical methods commonly used are limited in their effectiveness by cloud cover and water clarity. In situ surveys are often carried out manually and can therefore be quite inefficient. A proposed alternative method of small scale, high resolution mapping is an autonomous, amphibious hovercraft, fitted with high frequency single-beam and side-scan sonar instruments. A hovercraft can move seamlessly from land to water which allows for convenient and simple deployment. The sonar instruments are attached to a boat-shaped outrigger hull that can be raised and lowered automatically, enabling data collection in water as shallow as 10 cm. These data are used to extract seafloor characteristics in order to create detailed maps of the research area that include information such as sediment type, presence and extent of flora and fauna, and small-scale bathymetry.&lt;/p&gt;


2017 ◽  
Vol 21 (9) ◽  
pp. 4747-4765 ◽  
Author(s):  
Clara Linés ◽  
Micha Werner ◽  
Wim Bastiaanssen

Abstract. The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation–anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.


1996 ◽  
Vol 41 (6) ◽  
pp. 1220-1241 ◽  
Author(s):  
Peter A. Jumars ◽  
Darrell R. Jackson ◽  
Thomas F. Gross ◽  
Christopher Sherwood

Sign in / Sign up

Export Citation Format

Share Document