Large-Scale Purification of Bovine Brain Lactate Dehydrogenase by Affinity Chromatography on Immobilized Colchicine

1990 ◽  
Vol 107 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Tomoji Kocha ◽  
Teruo Fukuda ◽  
Toshiaki Isobe ◽  
Tsuneo Okuyama
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Jakob ◽  
Kseniya P. Vereshchagina ◽  
Anette Tillmann ◽  
Lorena Rivarola-Duarte ◽  
Denis V. Axenov-Gribanov ◽  
...  

AbstractLake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6–3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.


1975 ◽  
Vol 151 (3) ◽  
pp. 631-636 ◽  
Author(s):  
R I Brinkworth ◽  
C J Masters ◽  
D J Winzor

Rabbit muscle lactate dehydrogenase was subjected to frontal affinity chromatography on Sepharose-oxamate in the presence of various concentrations of NADH and sodium phosphate buffer (0.05 M, pH 6.8) containing 0.5 M-NaCl. Quantitative interpretation of the results yields an intrinsic association constant of 9.0 × 104M−1 for the interaction of enzyme with NADH at 5°C, a value that is confirmed by equilibrium-binding measurements. In a second series of experiments, zonal affinity chromatography of a mouse tissue extract under the same conditions was used to evaluate assoication constants of the order 2 × 105M−1, 3 × 105M−1, 4 × 105M−1, 7 × 105M−1 and 2 × 106M−1 for the interaction of NADH with the M4, M3H, M2H2, MH3 and H4 isoenzymes respectively of lactate dehydrogenase.


1979 ◽  
Vol 4 (4) ◽  
pp. 483-504 ◽  
Author(s):  
Kenneth C. Leskawa ◽  
Herbert C. Yohe ◽  
Michiko Matsumoto ◽  
Abraham Rosenberg

1973 ◽  
Vol 133 (3) ◽  
pp. 515-520 ◽  
Author(s):  
C. R. Lowe ◽  
P. D. G. Dean

The interaction of two isoenzymes of lactate dehydrogenase from pig heart muscle (H4) and rabbit skeletal muscle (M4), with immobilized nucleotides was examined: the effects of pH and temperature on the binding of lactate dehydrogenase were studied with immobilized NAD+ matrices. The influence of substrate, product and sulphite on the binding of heart muscle lactate dehydrogenase to immobilized NAD+ was investigated. The interaction of both lactate dehydrogenase isoenzymes with immobilized pyridine and adenine nucleotides and their derivatives were measured. The effects of these parameters on the interaction of lactate dehydrogenase with immobilized nucleotides were correlated with the known kinetic and molecular properties of the enzymes in free solution.


Sign in / Sign up

Export Citation Format

Share Document