scholarly journals Erratum: Sagittarius A Molecular Cloud Complex in HCO and Thermal SiO Emission Lines: Fig. 8.

2012 ◽  
Vol 64 (3) ◽  
pp. 64 ◽  
Author(s):  
Masato Tsuboi ◽  
Ken-ichi Tadaki ◽  
Atsushi Miyazaki ◽  
Toshihiro Handa
2011 ◽  
Vol 63 (4) ◽  
pp. 763-794 ◽  
Author(s):  
Masato Tsuboi ◽  
Ken-ichi Tadaki ◽  
Atsushi Miyazaki ◽  
Toshihiro Handa

Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Kenta Uehara ◽  
Ryosuke Miyawaki ◽  
Takahiro Tsutsumi ◽  
...  

Abstract We performed a search of cloud–cloud collision (CCC) sites in the Sagittarius A molecular cloud (SgrAMC) based on the survey observations using the Nobeyama 45 m telescope in the C32S J = 1–0 and SiO v = 0 J = 2–1 emission lines. We found candidates abundant in shocked molecular gas in the Galactic Center Arc (GCA). One of them, M0.014−0.054, is located in the mapping area of our previous ALMA mosaic observation. We explored the structure and kinematics of M0.014−0.054 in the C32S J = 2–1, C34S J = 2–1, SiO v = 0 J = 2–1, H13CO+J = 1–0, and SO N, J = 2, 2–1, 1 emission lines and fainter emission lines. M0.014−0.054 is likely formed by the CCC between the vertical molecular filaments (the “vertical part,” or VP) of the GCA, and other molecular filaments along Galactic longitude. The bridging features between these colliding filaments on the PV diagram are found, which are the characteristics expected in CCC sites. We also found continuum compact objects in M0.014−0.054, which have no counterpart in the H42α recombination line. They are detected in the SO emission line, and would be “hot molecular cores” (HMCs). Because the local thermodynamic equilibrium mass of one HMC is larger than the virial mass, it is bound gravitationally. This is also detected in the CCS emission line. The embedded star would be too young to ionize the surrounding molecular cloud. The VP is traced by a poloidal magnetic field. Because the strength of the magnetic field is estimated to be ∼mgauss using the Chandrasekhar–Fermi method, the VP is supported against fragmentation. The star formation in the HMC of M0.014−0.054 is likely induced by the CCC between the stable filaments, which may be a common mechanism in the SgrAMC.


2019 ◽  
Vol 488 (1) ◽  
pp. 495-511
Author(s):  
Yuefang Wu ◽  
Xunchuan Liu ◽  
Xi Chen ◽  
Lianghao Lin ◽  
Jinghua Yuan ◽  
...  

Abstract Using the new equipment of the Shanghai Tian Ma Radio Telescope, we have searched for carbon-chain molecules (CCMs) towards five outflow sources and six Lupus I starless dust cores, including one region known to be characterized by warm carbon-chain chemistry (WCCC), Lupus I-1 (IRAS 15398-3359), and one TMC-1 like cloud, Lupus I-6 (Lupus-1A). Lines of HC3N J = 2 − 1, HC5N J = 6 − 5, HC7N J = 14 − 13, 15 − 14, 16 − 15, and C3S J = 3 − 2 were detected in all the targets except in the outflow source L1660 and the starless dust core Lupus I-3/4. The column densities of nitrogen-bearing species range from 1012 to 1014 cm−2 and those of C3S are about 1012 cm−2. Two outflow sources, I20582+7724 and L1221, could be identified as new carbon-chain-producing regions. Four of the Lupus I dust cores are newly identified as early quiescent and dark carbon-chain-producing regions similar to Lup I-6, which together with the WCCC source, Lup I-1, indicate that carbon-chain-producing regions are popular in Lupus I which can be regard as a Taurus-like molecular cloud complex in our Galaxy. The column densities of C3S are larger than those of HC7N in the three outflow sources I20582, L1221, and L1251A. Shocked carbon-chain chemistry is proposed to explain the abnormal high abundances of C3S compared with those of nitrogen-bearing CCMs. Gas-grain chemical models support the idea that shocks can fuel the environment of those sources with enough S+ thus driving the generation of S-bearing CCMs.


2012 ◽  
Vol 545 ◽  
pp. A145 ◽  
Author(s):  
E. Winston ◽  
N. L. J. Cox ◽  
T. Prusti ◽  
B. Merín ◽  
A. Ribas ◽  
...  

1980 ◽  
Vol 237 ◽  
pp. 711 ◽  
Author(s):  
H. R. Dickel ◽  
J. R. Dickel ◽  
W. J. Wilson ◽  
M. W. Werner

2021 ◽  
Author(s):  
Xuepeng Chen ◽  
Weihua Guo ◽  
Jiangcheng Feng ◽  
Yang Su ◽  
Yan Sun ◽  
...  

Abstract Located at a distance of about 300 pc, Perseus OB2 (or Per~OB2 for short) is one of the major OB associations in the solar vicinity\cite{Zeeuw99,Belikov2002}, which has blown a supershell with a diameter of about 15 degree seen in the atomic hydrogen line surveys\cite{Sancisi1974,Heiles1984,Hartmann1997}. It was long considered that stellar feedback from the Per~OB2 association had formed a superbubble that swept up the surrounding interstellar medium into the observed supershell\cite{Bally2008}. Here we report the three-dimensional structure of the Per~OB2 superbubble, based on wide-field atomic hydrogen and molecular gas (traced by CO) surveys. The measured diameter of the superbubble is roughly 330 pc. Multiple atomic hydrogen shells/loops with expansion velocities of about 10 km/s are revealed in the superbubble, suggesting a complicated evolution history of the superbubble. Furthermore, the inspections of the morphology, kinematics and timescale of the Taurus-Auriga, California, and Perseus molecular clouds shows that the cloud complex is a super molecular cloud loop circling around and co-expanding with the Per~OB2 superbubble. We conclude that the Taurus-Auriga-California-Perseus loop, the largest star-forming molecular cloud complex in the solar neighborhood, is formed from the feedback of the Per~OB2 superbubble.


Author(s):  
Chenoa D. Tremblay ◽  
Christopher H. Jordan ◽  
Maria Cunningham ◽  
Paul A. Jones ◽  
Natasha Hurley-Walker

AbstractWe detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99–129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.


1979 ◽  
Vol 232 ◽  
pp. 451 ◽  
Author(s):  
S. L. Mufson ◽  
H. S. Liszt

Sign in / Sign up

Export Citation Format

Share Document