radio recombination lines
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 26 (4) ◽  
pp. 314-325
Author(s):  
S. V. Stepkin ◽  
◽  
O. O. Konovalenko ◽  
Y. V. Vasylkivskyi ◽  
D. V. Mukha ◽  
...  

Purpose: The analytical review of the main results of research in the new direction of the low-frequency radio astronomy, the interstellar medium radio spectroscopy at decameter waves, which had led to astrophysical discovery, recording of the radio recombination lines in absorption for highly excited states of interstellar carbon atoms (more than 600). Design/methodology/approach: The UTR-2 world-largest broadband radio telescope of decameter waves optimally connected with the digital correlation spectrum analyzers has been used. Continuous modernization of antenna system and devices allowed increasing the analysis band from 100 kHzto 24 MHz and a number of channels from 32 to 8192. The radio telescope and receiving equipment with appropriate software allowed to have a long efficient integration time enough for a large line series simultaneously with high resolution, noise immunity and relative sensitivity. Findings: A new type of interstellar spectral lines has been discovered and studied, the interstellar carbon radio recombination lines in absorption for the record high excited atoms with principal quantum numbers greater than 1000. The line parameters (intensity, shape, width, radial velocity) and their relation ship with the interstellar medium physical parameters have been determined. The temperature of line forming regions is about 100 K, the electron concentration up to 0.1 cm–3 and the size of a line forming region is about 10 pc. For the first time, radio recombination lines were observed in absorption. They have significant broadening and are amplified by the dielectronic-like recombination mechanism and are also the lowest frequency lines in atomic spectroscopy. Conclusions: The detected low-frequency carbon radio recombination lines and their observations have become a new highly effective tool for the cold partially ionized interstellar plasma diagnostics. Using them allows obtaining the information which is not available with the other astrophysical methods. For almost half a century of their research, a large amount of hardware-methodical and astrophysical results have been obtained including a record number of Galaxy objects, where there levant lines have been recorded. The domestic achievements have stimulated many theoretical and experimental studies in other countries, but the scientific achievements of Ukrainian scientists prove the best prospects for further development of this very important area of astronomical science. Key words: low-frequency radio astronomy; radio telescope; interstellar medium; radio recombination lines; carbon; hydrogen; spectral analyzer


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Carmen Sánchez Contreras

This is a non-comprehensive review of observations of pre-Planetary Nebulae (pPNe) and young Planetary Nebulae (yPNe) at (sub)mm-wavelengths, a valuable window for probing multi-phased gas and dust in these objects. This contribution focuses on observations of molecular lines (from carbon monoxide—CO—and other species), and briefly at the end, on hydrogen radio recombination lines from the emerging H ii regions at the center of yPNe. The main goal of this contribution is to show the potential of (sub)mm-wavelength observations of pPNe/yPNe to help the community to devise and develop new observational projects that will bring us closer to a better understanding of these latest stages of the evolution of low-to-intermediate (∼0.8–8 M ⊙ ) mass stars.


2020 ◽  
Vol 634 ◽  
pp. A138
Author(s):  
K. L. Emig ◽  
P. Salas ◽  
F. de Gasperin ◽  
J. B. R. Oonk ◽  
M. C. Toribio ◽  
...  

Context. Radio recombination lines (RRLs) at frequencies ν <  250 MHz trace the cold, diffuse phase of the interstellar medium, and yet, RRLs have been largely unexplored outside of our Galaxy. Next-generation low-frequency interferometers such as LOFAR, MWA, and the future SKA will, with unprecedented sensitivity, resolution, and large fractional bandwidths, enable the exploration of the extragalactic RRL universe. Aims. We describe methods used to (1) process LOFAR high band antenna (HBA) observations for RRL analysis, and (2) search spectra for RRLs blindly in redshift space. Methods. We observed the radio quasar 3C 190 (z ≈ 1.2) with the LOFAR HBA. In reducing these data for spectroscopic analysis, we placed special emphasis on bandpass calibration. We devised cross-correlation techniques that utilize the unique frequency spacing between RRLs to significantly identify RRLs in a low-frequency spectrum. We demonstrate the utility of this method by applying it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new observations of 3C 190. Results. Radio recombination lines have been detected in the foreground of 3C 190 at z = 1.12355 (assuming a carbon origin) owing to the first detection of RRLs outside of the local universe (first reported in A&A, 622, A7). Toward the Galactic supernova remnant Cassiopeia A, we uncover three new detections: (1) stimulated Cϵ transitions (Δn = 5) for the first time at low radio frequencies, (2) Hα transitions at 64 MHz with a full width at half-maximum of 3.1 km s−1 the most narrow and one of the lowest frequency detections of hydrogen to date, and (3) Cα at vLSR ≈ 0 km s−1 in the frequency range 55–78 MHz for the first time. Additionally, we recover Cα, Cβ, Cγ, and Cδ from the −47 km s−1 and −38 km s−1 components. In the nearby starburst galaxy M 82, we do not find a significant feature. With previously used techniques, we reproduce the previously reported line properties. Conclusions. RRLs have been blindly searched and successfully identified in Galactic (to high-order transitions) and extragalactic (to high redshift) observations with our spectral searching method. Our current searches for RRLs in LOFAR observations are limited to narrow (<100 km s−1) features, owing to the relatively small number of channels available for continuum estimation. Future strategies making use of a wider band (covering multiple LOFAR subbands) or designs with larger contiguous frequency chunks would aid calibration to deeper sensitivities and broader features.


2020 ◽  
Vol 492 (1) ◽  
pp. 1049-1060
Author(s):  
S A Siddiqui ◽  
Shafiqullah Khan ◽  
A Qaiyum

ABSTRACT We have performed self-consistent calculations to estimate the physical parameters of photodissociation regions (PDRs) associated with objects, namely, NGC 2024, Orion A and W3, using far-infrared continuum emission, fine-structure lines of C ii and O i, and radio recombination lines of carbon. Typically, PDRs separate H ii regions from the molecular cloud; therefore, necessary corrections for the contribution to C ii line emission due to the H ii region are made. For that purpose, using observational data, theoretical calculations are performed to obtain the best fit for the said observations. Three parameters, angular size, θ (in arcminutes), far-ultraviolet radiation field G0, and hydrogen density nH (which gives electron density and temperature), are varied, and the sets of parameters (G0 and nH) obtained for the NGC 2024, Orion A and W3 PDRs are (7.6 × 104 and 1.2 × 105 cm−3), (2.8 × 105 and 2.3 × 105 cm−3) and (3.7 × 105 and 1.9 × 105 cm−3), respectively. The relationship between line and continuum emissions from PDRs associated with H ii regions leads us to conclude that exciting stars for the NGC 2024, Orion A and W3 H ii regions are O8–O9V, O6–O7V and O5–O6V, respectively.


2019 ◽  
Vol 245 (1) ◽  
pp. 12 ◽  
Author(s):  
Xu-Jia Ouyang ◽  
Xi Chen ◽  
Zhi-Qiang Shen ◽  
Kai Yang ◽  
Xiao-Qiong Li ◽  
...  

2019 ◽  
Vol 626 ◽  
pp. A70 ◽  
Author(s):  
P. Salas ◽  
J. B. R. Oonk ◽  
K. L. Emig ◽  
C. Pabst ◽  
M. C. Toribio ◽  
...  

Context. The combined use of carbon radio recombination lines (CRRLs) and the 158μm-[CII] line is a powerful tool for the study of the energetics and physical conditions (e.g., temperature and density) of photodissociation regions (PDRs). However, there are few observational studies that exploit this synergy. Aims. Here we explore the relation between CRRLs and the 158μm-[CII] line in light of new observations and models. Methods. We present new and existing observations of CRRLs in the frequency range 0.15–230 GHz with ALMA, VLA, the GBT, Effelsberg 100m, and LOFAR towards Orion A (M 42). We complement these observations with SOFIA observations of the 158μm-[CII] line. We studied two PDRs: the foreground atomic gas, known as the Veil, and the dense PDR between the HII region and the background molecular cloud. Results. In the Veil we are able to determine the gas temperature and electron density, which we use to measure the ionization parameter and the photoelectric heating efficiency. In the dense PDR, we are able to identify a layered PDR structure at the surface of the molecular cloud to the south of the Trapezium cluster. There we find that the radio lines trace the colder portion of the ionized carbon layer, the C+/C/CO interface. By modeling the emission of the 158μm-[CII] line and CRRLs as arising from a PDR we derive a thermal pressure >5 × 107 K cm−3 and a radiation field G0 ≈ 105 close to the Trapezium. Conclusions. This work provides additional observational support for the use of CRRLs and the 158μm-[CII] line as complementary tools to study dense and diffuse PDRs, and highlights the usefulness of CRRLs as probes of the C+/C/CO interface.


Sign in / Sign up

Export Citation Format

Share Document