scholarly journals Transcranial Doppler Evaluation of the Cerebral Vasculature in Women Patients who Have Migraine with Aura

Pain Medicine ◽  
2020 ◽  
Vol 21 (11) ◽  
pp. 3012-3017
Author(s):  
Igor Petrušić ◽  
Ana Podgorac ◽  
Aleksandra Radojičić ◽  
Jasna Zidverc-Trajković

Abstract Background Previous studies suggest that increased cerebrovascular reactivity might be a feature of patients who have migraine with aura (MwA). The correlation between the clinical presentation of migraine with aura and transcranial Doppler parameters remains unclear. Objective The main aim of this study was to explore cerebral blood flow, vascular resistance, and cerebrovascular reactivity in women MwA. Also, the relationships between hemodynamic conditions and aura characteristics are examined. Design Cross-sectional study. Setting Headache Center, Neurology Clinic, Clinical Center of Serbia. Subjects Fifty-four women MwA and 49 healthy controls (HCs). Methods Transcranial Doppler sonography examination was used to determine blood flow mean velocity (MV) and pulsatility index (PI), as well as breath-holding index (BHI), in 15 arterial segments comprising the circle of Willis. Results A total of 54 women MwA and 49 HCs were studied. The PIs of all segments of the left and right middle cerebral arteries and the left and right anterior cerebral arteries were significantly higher in MwA with regards to HCs. Also, both the left and right BHIs were significantly higher in MwA than HCs. In addition, MVs of the right vertebral artery and the first segment of the basilar artery were significantly lower in MwA than HCs. Longer duration of migraine aura showed a weak negative correlation with the PI of the left posterior cerebral artery. Conclusions Our findings suggest increased vessel pulsatility, abnormal cerebrovascular reactivity, and decreased cerebral blood flow velocity in several arterial segments of the Willis circle in women MwA.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hyun Ku Lee ◽  
Sang-Kwan Moon ◽  
Chul Jin ◽  
Seung-Yeon Cho ◽  
Seong-Uk Park ◽  
...  

The Governing Vessel 14 (GV14) (Dazhui) is one of the acupuncture points referred to as “seven acupoints for stroke.” Nevertheless, there is a scarcity of research on the effects of acupuncture treatment at GV14. This study investigated the effects of acupuncture at GV14 on cerebral blood flow (CBF), especially that in the basilar artery (BA) and the middle cerebral arteries (MCA). Sixteen healthy men aged 20 to 29 years were enrolled in this study. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The following were assessed: closed circuit rebreathing- (CCR-) induced carbon dioxide (CO2) reactivity, modified blood flow velocity at 40 mmHg (CV40) on BA and MCAs, blood pressure (BP), and heart rate (HR). Observed results were obtained after comparison with the baseline evaluation. Statistically significant elevations in CO2 reactivity were recorded in the BA (3.28 to 4.70, p < 0.001 ) and MCAs (right: 3.81 to 5.25, p = 0.001 ; left: 3.84 to 5.12, p = 0.005 ) after acupuncture at GV14. The CV40 increased statistically significantly only in the BA (45.49 to 50.41, p = 0.003 ). No change was observed in BP (106.83 to 107.08 (mmHg), p = 0.335 ) and HR (77 to 75 (bpm), p = 0.431 ). Acupuncture at GV14 improved CBF velocity. These results could be explained by the regulation of endothelium-dependent vessel dilation effected by acupuncture. This trial is registered with Korean Clinical Trial Registry (http://cris.nih.go.kr; registration number: KCT0004787).


2019 ◽  
Author(s):  
Suk Tak Chan ◽  
Karleyton C. Evans ◽  
Tian Yue Song ◽  
Juliett Selb ◽  
Andre van der Kouwe ◽  
...  

AbstractHypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). Here we showed that the cerebrovascular responses to brief breath hold epochs were coupled not only with increased partial pressure of carbon dioxide (PCO2), but also with a decrease in partial pressure of oxygen (PO2). We used transcranial Doppler ultrasound to evaluate the CBF changes during breath holding by measuring the cerebral blood flow velocity (CBFv) in the middle cerebral arteries, a pair of cerebral arteries that supply most parts of the brain. The regional CBF changes during breath hold epochs were mapped with blood oxygenation level dependent (BOLD) signal changes as surrogate of CBF changes using functional magnetic resonance imaging (fMRI) technique. Given the interdependence of the dynamic changes between PCO2 and PO2, we found that the breath-by-breath O2-CO2 exchange ratio (bER), namely the ratio of changes in PO2 (ΔPO2) to changes in PCO2 (ΔPCO2) between end inspiration and end expiration, was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional cerebrovascular reactivity (CVR) results derived by regressing BOLD signal changes on bER under breath hold challenge resembled those derived by regressing BOLD signal changes on end-tidal partial pressure of CO2 (PETCO2) under exogenous CO2 challenge. Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under breath hold challenge, although the physiological mechanisms of cerebrovascular changes underlying breath hold and exogenous CO2 challenges are potentially different.


Sign in / Sign up

Export Citation Format

Share Document