scholarly journals Cerebrovascular reactivity assessment with O2-CO2 exchange ratio under brief breath hold challenge

2019 ◽  
Author(s):  
Suk Tak Chan ◽  
Karleyton C. Evans ◽  
Tian Yue Song ◽  
Juliett Selb ◽  
Andre van der Kouwe ◽  
...  

AbstractHypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). Here we showed that the cerebrovascular responses to brief breath hold epochs were coupled not only with increased partial pressure of carbon dioxide (PCO2), but also with a decrease in partial pressure of oxygen (PO2). We used transcranial Doppler ultrasound to evaluate the CBF changes during breath holding by measuring the cerebral blood flow velocity (CBFv) in the middle cerebral arteries, a pair of cerebral arteries that supply most parts of the brain. The regional CBF changes during breath hold epochs were mapped with blood oxygenation level dependent (BOLD) signal changes as surrogate of CBF changes using functional magnetic resonance imaging (fMRI) technique. Given the interdependence of the dynamic changes between PCO2 and PO2, we found that the breath-by-breath O2-CO2 exchange ratio (bER), namely the ratio of changes in PO2 (ΔPO2) to changes in PCO2 (ΔPCO2) between end inspiration and end expiration, was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional cerebrovascular reactivity (CVR) results derived by regressing BOLD signal changes on bER under breath hold challenge resembled those derived by regressing BOLD signal changes on end-tidal partial pressure of CO2 (PETCO2) under exogenous CO2 challenge. Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under breath hold challenge, although the physiological mechanisms of cerebrovascular changes underlying breath hold and exogenous CO2 challenges are potentially different.


2008 ◽  
Vol 29 (1) ◽  
pp. 176-185 ◽  
Author(s):  
Manus J Donahue ◽  
Robert D Stevens ◽  
Michiel de Boorder ◽  
James J Pekar ◽  
Jeroen Hendrikse ◽  
...  

Functional neuroimaging is most commonly performed using the blood-oxygenation-level-dependent (BOLD) approach, which is sensitive to changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and the cerebral metabolic rate of oxygen (CMRO2). However, the precise mechanism by which neuronal activity elicits a hemodynamic response remains controversial. Here, visual stimulation (14 secs flashing checkerboard) and breath-hold (4 secs exhale + 14 secs breath hold) experiments were performed in alternating sequence on healthy volunteers using BOLD, CBV-weighted, and CBF-weighted fMRI. After visual stimulation, the BOLD signal persisted for 33 ± 5 secs (n = 9) and was biphasic with a negative component (undershoot), whereas CBV and CBF returned to baseline without an undershoot at 20 ± 5 and 20 ± 3 secs, respectively. After breath hold, the BOLD signal returned to baseline (23 ±7 secs) at the same time ( P < 0.05) as CBV (21 ± 6 secs) and CBF (18 ±3 secs), without a poststimulus undershoot. These data suggest that the BOLD undershoot after visual activation reflects a persistent increase in CMRO2. These observations support the view that CBV and CBF responses elicited by neuronal activation are not necessarily coupled to local tissue metabolism.



Pain Medicine ◽  
2020 ◽  
Vol 21 (11) ◽  
pp. 3012-3017
Author(s):  
Igor Petrušić ◽  
Ana Podgorac ◽  
Aleksandra Radojičić ◽  
Jasna Zidverc-Trajković

Abstract Background Previous studies suggest that increased cerebrovascular reactivity might be a feature of patients who have migraine with aura (MwA). The correlation between the clinical presentation of migraine with aura and transcranial Doppler parameters remains unclear. Objective The main aim of this study was to explore cerebral blood flow, vascular resistance, and cerebrovascular reactivity in women MwA. Also, the relationships between hemodynamic conditions and aura characteristics are examined. Design Cross-sectional study. Setting Headache Center, Neurology Clinic, Clinical Center of Serbia. Subjects Fifty-four women MwA and 49 healthy controls (HCs). Methods Transcranial Doppler sonography examination was used to determine blood flow mean velocity (MV) and pulsatility index (PI), as well as breath-holding index (BHI), in 15 arterial segments comprising the circle of Willis. Results A total of 54 women MwA and 49 HCs were studied. The PIs of all segments of the left and right middle cerebral arteries and the left and right anterior cerebral arteries were significantly higher in MwA with regards to HCs. Also, both the left and right BHIs were significantly higher in MwA than HCs. In addition, MVs of the right vertebral artery and the first segment of the basilar artery were significantly lower in MwA than HCs. Longer duration of migraine aura showed a weak negative correlation with the PI of the left posterior cerebral artery. Conclusions Our findings suggest increased vessel pulsatility, abnormal cerebrovascular reactivity, and decreased cerebral blood flow velocity in several arterial segments of the Willis circle in women MwA.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hyun Ku Lee ◽  
Sang-Kwan Moon ◽  
Chul Jin ◽  
Seung-Yeon Cho ◽  
Seong-Uk Park ◽  
...  

The Governing Vessel 14 (GV14) (Dazhui) is one of the acupuncture points referred to as “seven acupoints for stroke.” Nevertheless, there is a scarcity of research on the effects of acupuncture treatment at GV14. This study investigated the effects of acupuncture at GV14 on cerebral blood flow (CBF), especially that in the basilar artery (BA) and the middle cerebral arteries (MCA). Sixteen healthy men aged 20 to 29 years were enrolled in this study. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The following were assessed: closed circuit rebreathing- (CCR-) induced carbon dioxide (CO2) reactivity, modified blood flow velocity at 40 mmHg (CV40) on BA and MCAs, blood pressure (BP), and heart rate (HR). Observed results were obtained after comparison with the baseline evaluation. Statistically significant elevations in CO2 reactivity were recorded in the BA (3.28 to 4.70, p < 0.001 ) and MCAs (right: 3.81 to 5.25, p = 0.001 ; left: 3.84 to 5.12, p = 0.005 ) after acupuncture at GV14. The CV40 increased statistically significantly only in the BA (45.49 to 50.41, p = 0.003 ). No change was observed in BP (106.83 to 107.08 (mmHg), p = 0.335 ) and HR (77 to 75 (bpm), p = 0.431 ). Acupuncture at GV14 improved CBF velocity. These results could be explained by the regulation of endothelium-dependent vessel dilation effected by acupuncture. This trial is registered with Korean Clinical Trial Registry (http://cris.nih.go.kr; registration number: KCT0004787).



2019 ◽  
Vol 40 (9) ◽  
pp. 1879-1889 ◽  
Author(s):  
Hannah V Furby ◽  
Esther AH Warnert ◽  
Christopher J Marley ◽  
Damian M Bailey ◽  
Richard G Wise

Cardiorespiratory fitness is thought to have beneficial effects on systemic vascular health, in part, by decreasing arterial stiffness. However, in the absence of non-invasive methods, it remains unknown whether this effect extends to the cerebrovasculature. The present study uses a novel pulsed arterial spin labelling (pASL) technique to explore the relationship between cardiorespiratory fitness and arterial compliance of the middle cerebral arteries (MCAC). Other markers of cerebrovascular health, including resting cerebral blood flow (CBF) and cerebrovascular reactivity to CO2 (CVRCO2) were also investigated. Eleven healthy males aged 21 ± 2 years with varying levels of cardiorespiratory fitness (maximal oxygen uptake ([Formula: see text]O2MAX) 38–76 ml/min/kg) underwent MRI scanning at 3 Tesla. Higher [Formula: see text]O2MAX was associated with greater MCAC (R2 = 0.64, p < 0.01) and lower resting grey matter CBF (R2 = 0.75, p < 0.01). However, [Formula: see text]O2MAX was not predictive of global grey matter BOLD-based CVR (R2 = 0.47, p = 0.17) or CBF-based CVR (R2 = 0.19, p = 0.21). The current experiment builds upon the established benefits of exercise on arterial compliance in the systemic vasculature, by showing that increased cardiorespiratory fitness is associated with greater cerebral arterial compliance in early adulthood.



2006 ◽  
Vol 64 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Katia C. Andrade ◽  
Octavio M. Pontes-Neto ◽  
Joao P. Leite ◽  
Antonio Carlos Santos ◽  
Oswaldo Baffa ◽  
...  

The increase of relative cerebral blood flow (rCBF) may contribute for a change in blood oxygenation level dependent signal (BOLD). The main purpose of this study is to investigate some aspects of perfusional alterations in the human brain in response to a uniform stimulation: hypercapnia induced by breath holding. It was observed that the BOLD signal increased globally during hypercapnia and that it is correlated with the time of breath holding. This signal increase shows a clear distinction between gray and white matter, being greater in the grey matter.



2021 ◽  
Vol 13 ◽  
Author(s):  
C. Elizabeth Shaaban ◽  
Caterina Rosano ◽  
Ann D. Cohen ◽  
Theodore Huppert ◽  
Meryl A. Butters ◽  
...  

Background: Preeclampsia is emerging as a sex-specific risk factor for cerebral small vessel disease (SVD) and dementia, but the reason is unknown. We assessed the relationship of maternal vascular malperfusion (MVM), a marker of placental SVD, with cognition and cerebral SVD in women with and without preeclampsia. We hypothesized women with both preeclampsia and MVM would perform worst on information processing speed and executive function.Methods: Women (n = 45; mean 10.5 years post-delivery; mean age: 41 years; 42.2% Black) were classified as preeclampsia-/MVM-, preeclampsia+/MVM-, or preeclampsia+/MVM+. Information processing speed, executive function, and memory were assessed. In a pilot sub-study of cerebrovascular reactivity (CVR; n = 22), cerebral blood flow during room-air breathing and breath-hold induced hypercapnia were obtained via arterial spin labeling MRI. Non-parametric tests and regression models were used to test associations.Results: Between-group cognitive differences were significant for information processing speed (p = 0.02); preeclampsia+/MVM+ had the lowest scores. Cerebral blood flow increased from room-air to breath-hold, globally and in all regions in the three groups, except the preeclampsia+/MVM+ parietal region (p = 0.12). Lower parietal CVR (less change from room-air breathing to breath-holding) was correlated with poorer information processing speed (partial ρ = 0.63, p = 0.005) and executive function (ρ = 0.50, p = 0.03) independent of preeclampsia/MVM status.Conclusion: Compared to women without preeclampsia and MVM, midlife women with both preeclampsia and MVM have worse information processing speed and may have blunted parietal CVR, an area important for information processing speed and executive function. MVM in women with preeclampsia is a promising sex-specific indicator of cerebrovascular integrity in midlife.



2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Anthony R. Bain ◽  
Philip N. Ainslie ◽  
Ryan L. Hoiland ◽  
Chris K. Willie ◽  
David B. MacLeod ◽  
...  

AbstractThe role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO



2017 ◽  
Vol 39 (5) ◽  
pp. 834-848 ◽  
Author(s):  
Mark B Vestergaard ◽  
Henrik BW Larsson

The goal of the present study was to examine the cerebral metabolism and vascular reactivity during extended breath-holds (ranging from 2 min 32 s to 7 min 0 s) and during a hypoxic challenge in freedivers and non-diver controls. Magnetic resonance imaging was used to measure the global cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2), and magnetic resonance spectroscopy was used to measure the cerebral lactate, glutamate+glutamine, N-acetylaspartate and phosphocreatine+creatine concentrations in the occipital lobe. Fifteen freedivers and seventeen non-diver controls participated. The freedivers showed remarkable increases in CBF (107%) during the breath-holds, compensating for arterial desaturation, and sustained cerebral oxygen delivery (CDO2). CMRO2 was unaffected throughout the breath-holds. During the hypoxic challenge, the freedivers had larger increases in blood flow in the sagittal sinus than the non-divers, and could sustain normal CDO2. No differences were found in lactate production, global CBF or CMRO2. We conclude that the mechanism for sustaining brain function during breath-holding in freedivers involves an extraordinary increase in perfusion, and that freedivers present evidence for higher cerebrovascular reactivity, but not for higher lactate-producing glycolysis during a hypoxic challenge compared to controls.



2020 ◽  
Vol 2 (9) ◽  
pp. 1551-1562
Author(s):  
Leonie Zerweck ◽  
Till-Karsten Hauser ◽  
Constantin Roder ◽  
Uwe Klose

Abstract For the prognosis of stroke, patients with moyamoya disease (MMD) require the estimation of remaining cerebrovascular reactivity. For this purpose, CO2-triggered BOLD fMRI by use of short breath-hold periods seems to be a highly available alternative to nuclear medicine methods. Too long breath-hold periods are difficult to perform, too short breath-hold periods do not lead to sufficient BOLD signal changes. We aimed to investigate the required minimum breath-hold duration to detect distinct BOLD signals in the tissue of healthy subjects to find out how long the minimum breath-hold duration in clinical diagnostics of MMD should be. A prospective study was performed. Fourteen healthy subjects underwent fMRI during end-expiration breath-hold periods of different duration (3, 6, 9, and 12 s). Additionally, we compared the influence of paced and self-paced breathing altering the breath-hold periods. Data of a patient with MMD was evaluated to investigate whether the tested procedure is suitable for clinical use. Significant global BOLD signal increases were detected after breath-hold periods of 6, 9, and 12 s. The signals were significantly higher after breath-hold periods of 9 s than after 6 s, while not when the duration was extended from 9 to 12 s. Furthermore, we found additional BOLD signal changes before the expected signal increases, which could be avoided by paced respiratory instructions. This investigation indicates that end-expiration breath-hold period of at least 9 s might be used to measure the cerebrovascular reactivity. This time period resulted in distinct BOLD signal changes and could be performed easily.



2019 ◽  
Vol 8 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Michael Bodo ◽  
Richard Mahon ◽  
Alex Razumovsky ◽  
Efim Kouperberg ◽  
Michael Crimmins ◽  
...  

Abstract In neurosurgery intensive care units, cerebrovascular reactivity tests for neuromonitoring are used to evaluate the status of cerebral blood flow autoregulation; lack of autoregulation indicates a poor patient outcome. The goal of neuromonitoring is to prevent secondary injuries following a primary central nervous system injury, when the brain is vulnerable to further compromise due to hypoxia, ischemia and disturbances in cerebral blood flow and intracranial pressure. Ideally, neuromonitoring would be noninvasive and continuous. This study compares cerebrovascular reactivity monitored by rheoencephalography, a noninvasive continuous monitoring modality, to cerebrovascular reactivity measured by currently used neuromonitoring modalities: transcranial Doppler, near infrared spectroscopy and laser Doppler flowmetry. Fourteen healthy volunteer subjects were measured. The tests used for comparison of cerebrovascular reactivity were breath-holding, hyperventilation, CO2 inhalation, the Valsalva maneuver, and the Trendelenburg and reverse Trendelenburg positions. Data for all modalities measured were recorded by computers and processed off line. All measured modalities reflected cerebrovascular reactivity with variabilities. Breath-holding, CO2 inhalation, and the Valsalva maneuver caused CO2 increase and consequent brain vasodilatation; hyperventilation caused CO2 decrease and brain vasoconstriction. The Trendelenburg and reverse Trendelenburg positions caused extracranial blood volume changes, which masked intracranial cerebrovascular reactivity. The hyperventilation test proved ineffective for measuring cerebrovascular reactivity with rheoencephalography due to respiratory artifacts. Some discrepancies among the



Sign in / Sign up

Export Citation Format

Share Document