scholarly journals Toward experimental observations of induced Compton scattering by high-power laser facilities

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Shuta J Tanaka ◽  
Ryo Yamazaki ◽  
Yasuhiro Kuramitsu ◽  
Youichi Sakawa

Abstract Induced Compton scattering (ICS) is a nonlinear interaction between intense electromagnetic radiation and a rarefied plasma. Although the magnetosphere of pulsars is a potential site at which ICS occurs in nature, ICS signatures have not been discovered so far. One of the reasons for the non-detection of ICS signatures is that we still do not possess a concrete understanding of such nonlinear plasma interactions because of their nonlinear nature and the lack of experimental confirmations. Here, we propose a possible approach to understand ICS experimentally in laboratories, specifically, with the use of the up-to-date short-pulse lasers. We find that the scattered light of ICS has characteristic signatures in its spectrum. The signatures will be observed in some current laser facilities. The characteristic spectrum is quantitatively predictable and we can diagnose the properties of the scattering plasma from the signatures.

2010 ◽  
Author(s):  
Alexey O. Levchenko ◽  
Nikolai N. Ustinovskii ◽  
Vladimir D. Zvorykin

2010 ◽  
Vol 28 (4) ◽  
pp. 531-537 ◽  
Author(s):  
R.P. Sharma ◽  
A. Monika ◽  
P. Sharma ◽  
P. Chauhan ◽  
A. Ji

AbstractThis paper presents an investigation of the excitation of a Tera hertz (THz) radiation by nonlinear interaction of a circularly polarized high power laser beam and density ripple in collisionless magneto plasma. The ponderomotive force due to the nonlinear interaction between the laser and density ripple generates a nonlinear current at a difference frequency. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate, then this difference frequency can be brought in the THz range. Filamentation (self focusing) of a circularly polarized beam propagating along the direction of ambient magnetic field in plasma is first investigated within paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre-existing density ripple to produce a nonlinear current driving the THz radiation. Analytical expressions for the beam width of the laser beam, electric vector of the THz wave have been obtained. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. For typical laser beam and plasma parameters with the incident laser power flux = 1014 W/cm2, laser beam radius (r0) = 40 µm, laser frequency (ω0) = 1014 rad/s and plasma density (n0) = 3 × 1018 cm−3, normalized ripple density amplitude (μ) = 0.3, the produced THz emission can be at the level of Giga watt in power.


2006 ◽  
Vol 121 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Y. Hayashi ◽  
A. Fukumi ◽  
K. Matsukado ◽  
M. Mori ◽  
H. Kotaki ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
D. Raffestin ◽  
D. Batani ◽  
J. Caron ◽  
J. Baggio ◽  
G. Boutoux ◽  
...  

The advent of high-energy short-pulse laser beams poses new problems related to radiation protection. The radiation generated in experiments using multipetawatt laser systems leads to prompt doses and potentially to the activation of the materials within the interaction chamber and the experimental hall. Despite many new PW laser facilities are nowadays entering into operation, this question has received little attention until now. In this paper, we evaluate the radiological effects induced by the operation of a high-power laser facility. Two working regimes are considered related to the production of hard X-rays and energetic protons. The methodology is general and may be applied for the design of experiments with any high-power laser systems.


Sign in / Sign up

Export Citation Format

Share Document