scholarly journals Moduli Spaces of Generalized Hyperpolygons

Author(s):  
Steven Rayan ◽  
Laura P Schaposnik

Abstract We introduce the notion of generalized hyperpolygon, which arises as a representation, in the sense of Nakajima, of a comet-shaped quiver. We identify these representations with rigid geometric figures, namely pairs of polygons: one in the Lie algebra of a compact group and the other in its complexification. To such data, we associate an explicit meromorphic Higgs bundle on a genus-g Riemann surface, where g is the number of loops in the comet, thereby embedding the Nakajima quiver variety into a Hitchin system on a punctured genus-g Riemann surface (generally with positive codimension). We show that, under certain assumptions on flag types, the space of generalized hyperpolygons admits the structure of a completely integrable Hamiltonian system of Gelfand–Tsetlin type, inherited from the reduction of partial flag varieties. In the case where all flags are complete, we present the Hamiltonians explicitly. We also remark upon the discretization of the Hitchin equations given by hyperpolygons, the construction of triple branes (in the sense of Kapustin–Witten mirror symmetry), and dualities between tame and wild Hitchin systems (in the sense of Painlevé transcendents).

Author(s):  
Mirko Mauri

AbstractThe moduli spaces of flat $${\text{SL}}_2$$ SL 2 - and $${\text{PGL}}_2$$ PGL 2 -connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin system”.


2003 ◽  
Vol 55 (3) ◽  
pp. 609-635 ◽  
Author(s):  
Ruxandra Moraru

AbstractA Hopf surface is the quotient of the complex surface by an infinite cyclic group of dilations of . In this paper, we study the moduli spaces of stable -bundles on a Hopf surface , from the point of view of symplectic geometry. An important point is that the surface is an elliptic fibration, which implies that a vector bundle on can be considered as a family of vector bundles over an elliptic curve. We define a map that associates to every bundle on a divisor, called the graph of the bundle, which encodes the isomorphism class of the bundle over each elliptic curve. We then prove that the map G is an algebraically completely integrable Hamiltonian system, with respect to a given Poisson structure on . We also give an explicit description of the fibres of the integrable system. This example is interesting for several reasons; in particular, since the Hopf surface is not Kähler, it is an elliptic fibration that does not admit a section.


2014 ◽  
Vol 25 (02) ◽  
pp. 1450016 ◽  
Author(s):  
UGO BRUZZO ◽  
PETER DALAKOV

Donagi and Markman (1993) have shown that the infinitesimal period map for an algebraic completely integrable Hamiltonian system (ACIHS) is encoded in a section of the third symmetric power of the cotangent bundle to the base of the system. For the ordinary Hitchin system the cubic is given by a formula of Balduzzi and Pantev. We show that the Balduzzi–Pantev formula holds on maximal rank symplectic leaves of the G-generalized Hitchin system.


These volumes contain the proceedings of the conference held at Aarhus, Oxford and Madrid in September 2016 to mark the seventieth birthday of Nigel Hitchin, one of the world’s foremost geometers and Savilian Professor of Geometry at Oxford. The proceedings contain twenty-nine articles, including three by Fields medallists (Donaldson, Mori and Yau). The articles cover a wide range of topics in geometry and mathematical physics, including the following: Riemannian geometry, geometric analysis, special holonomy, integrable systems, dynamical systems, generalized complex structures, symplectic and Poisson geometry, low-dimensional topology, algebraic geometry, moduli spaces, Higgs bundles, geometric Langlands programme, mirror symmetry and string theory. These volumes will be of interest to researchers and graduate students both in geometry and mathematical physics.


Author(s):  
Naoki Fujita ◽  
Akihiro Higashitani

Abstract A Newton–Okounkov body is a convex body constructed from a projective variety with a globally generated line bundle and with a higher rank valuation on the function field, which gives a systematic method of constructing toric degenerations of projective varieties. Its combinatorial properties heavily depend on the choice of a valuation, and it is a fundamental problem to relate Newton–Okounkov bodies associated with different kinds of valuations. In this paper, we address this problem for flag varieties using the framework of combinatorial mutations, which was introduced in the context of mirror symmetry for Fano manifolds. By applying iterated combinatorial mutations, we connect specific Newton–Okounkov bodies of flag varieties including string polytopes, Nakashima–Zelevinsky polytopes, and Feigin–Fourier–Littelmann–Vinberg polytopes.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Matsuo Sato

We prove that the moduli space of the pseudo holomorphic curves in the A-model on a symplectic torus is homeomorphic to a moduli space of Feynman diagrams in the configuration space of the morphisms in the B-model on the corresponding elliptic curve. These moduli spaces determine the A∞ structure of the both models.


Sign in / Sign up

Export Citation Format

Share Document