scholarly journals Resting-State Brain Activity in Schizophrenia and Major Depression: A Quantitative Meta-Analysis

2011 ◽  
Vol 39 (2) ◽  
pp. 358-365 ◽  
Author(s):  
S. Kuhn ◽  
J. Gallinat
Author(s):  
Benedikt Sundermann ◽  
Mona Olde lütke Beverborg ◽  
Bettina Pfleiderer

Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features, for example for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD to serve such feature selection and as a secondary aim to improve understanding of disease mechanisms. 32 studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Results were compared with established resting state networks (RSNs) and spatial representations of recently introduced temporally independent functional modes (TFMs) of spontaneous brain activity. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/ hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components associated with self-referential processing and the subgenual anterior cingulate cortex) with lateral frontal areas related to externally-directed cognition. One particular TFM seems to better comprehend the findings than classical RSNs. Alterations that can be captured by resting state fMRI show considerable overlap with those identifiable with other neuroimaging modalities though differing in some aspects.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaying Gong ◽  
Junjing Wang ◽  
Shaojuan Qiu ◽  
Pan Chen ◽  
Zhenye Luo ◽  
...  

Abstract Identification of intrinsic brain activity differences and similarities between major depression (MDD) and bipolar disorder (BD) is necessary. However, results have not yet yielded consistent conclusions. A meta-analysis of whole-brain resting-state functional MRI (rs-fMRI) studies that explored differences in the amplitude of low-frequency fluctuation (ALFF) between patients (including MDD and BD) and healthy controls (HCs) was conducted using seed-based d mapping software. Systematic literature search identified 50 studies comparing 1399 MDD patients and 1332 HCs, and 15 studies comparing 494 BD patients and 593 HCs. MDD patients displayed increased ALFF in the right superior frontal gyrus (SFG) (including the medial orbitofrontal cortex, medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC]), bilateral insula extending into the striatum and left supramarginal gyrus and decreased ALFF in the bilateral cerebellum, bilateral precuneus, and left occipital cortex compared with HCs. BD showed increased ALFF in the bilateral inferior frontal gyrus, bilateral insula extending into the striatum, right SFG, and right superior temporal gyrus (STG) and decreased ALFF in the bilateral precuneus, left cerebellum (extending to the occipital cortex), left ACC, and left STG. In addition, MDD displayed increased ALFF in the left lingual gyrus, left ACC, bilateral precuneus/posterior cingulate gyrus, and left STG and decreased ALFF in the right insula, right mPFC, right fusiform gyrus, and bilateral striatum relative to BD patients. Conjunction analysis showed increased ALFF in the bilateral insula, mPFC, and decreased ALFF in the left cerebellum in both disorders. Our comprehensive meta-analysis suggests that MDD and BD show a common pattern of aberrant regional intrinsic brain activity which predominantly includes the insula, mPFC, and cerebellum, while the limbic system and occipital cortex may be associated with spatially distinct patterns of brain function, which provide useful insights for understanding the underlying pathophysiology of brain dysfunction in affective disorders, and developing more targeted and efficacious treatment and intervention strategies.


2012 ◽  
Vol 46 (2) ◽  
pp. 361-373 ◽  
Author(s):  
Jun Chen ◽  
Yong Xu ◽  
Juan Zhang ◽  
Zhifen Liu ◽  
Cheng Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document