A Pasture-Based Model for Extended Drought Management, Long-Term Sustainability, and Economic Viability in the Southern High Plains

2007 ◽  
Vol 5 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Carlos Ortega-Ochoa ◽  
Michael C. Farmer ◽  
Carlos Villalobos
2000 ◽  
Vol 53 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Vance T. Holliday

AbstractThe paleoenvironments of late Pleistocene and early Holocene time on the Southern High Plains have been studied for decades, but regionally extensive or long-term, easily recoverable proxy climate indicators are difficult to find. The stratigraphy of valley fill and upland eolian deposits and stable-carbon isotope data, in addition to geographically limited paleontological data, now provide clues to the environment during this time, which includes the earliest, or Paleoindian period (∼11,200–8000 14C yr B.P.) of human occupation. During the Clovis occupation (∼11,200–10,900 14C yr B.P.), valleys contained perennial streams. This was followed in Folsom time (10,900–10,200 14C yr B.P.) by an abrupt change to lakes and ponds (with water levels fluctuating between several meters depth and no surface water) and marshes and accumulation of sheet sands on uplands, starting the earliest phase of construction of the regional dune fields. These changing conditions indicate a shift from relatively wetter to relatively drier conditions with episodic drought. Stable-C isotopes further indicate that warming characterized the Clovis–Folsom transition. During the rest of the Paleoindian period the environment was relatively cool but fluctuated between wetter and drier conditions with an overall trend toward drying that resulted in further enlargement of the dune fields and culminated in the warm, dry Altithermal beginning ∼8000 14C yr B.P. Clovis time probably was the wettest of any Paleoindian period in terms of runoff and spring discharge. The Folsom period was drier and was the earliest episode of regional wind erosion and eolian deposition and may have been the warmest of Paleoindian times. Evidence of a previously hypothesized “Clovis drought” in this region is sparse.


2021 ◽  
Vol 212 ◽  
pp. 105040
Author(s):  
Steven A. Mauget ◽  
Sushil K. Himanshu ◽  
Tim S. Goebel ◽  
Srinivasalu Ale ◽  
Robert J. Lascano ◽  
...  

2021 ◽  
Author(s):  
Nana Yaw O. Kusi ◽  
Katie L. Lewis ◽  
Gaylon D. Morgan ◽  
Glen L. Ritchie ◽  
Sanjit K. Deb ◽  
...  

2005 ◽  
Vol 6 (3) ◽  
pp. 297-311 ◽  
Author(s):  
K. F. Bronson ◽  
J. D. Booker ◽  
S. J. Officer ◽  
R. J. Lascano ◽  
S. J. Maas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document