Apparent Electrical Conductivity, Soil Properties and Spatial Covariance in the U.S. Southern High Plains

2005 ◽  
Vol 6 (3) ◽  
pp. 297-311 ◽  
Author(s):  
K. F. Bronson ◽  
J. D. Booker ◽  
S. J. Officer ◽  
R. J. Lascano ◽  
S. J. Maas ◽  
...  
2005 ◽  
Vol 46 (1-3) ◽  
pp. 263-283 ◽  
Author(s):  
K.A. Sudduth ◽  
N.R. Kitchen ◽  
W.J. Wiebold ◽  
W.D. Batchelor ◽  
G.A. Bollero ◽  
...  

Geoderma ◽  
2018 ◽  
Vol 319 ◽  
pp. 185-193 ◽  
Author(s):  
Asier Uribeetxebarria ◽  
Jaume Arnó ◽  
Alexandre Escolà ◽  
José A. Martínez-Casasnovas

2013 ◽  
Vol 93 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Nahuel Raúl Peralta ◽  
José Luis Costa ◽  
Mónica Balzarini ◽  
Hernán Angelini

Peralta, N. R., Costa, J. L., Balzarini, M. and Angelini, H. 2013. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil Sci. 93: 205–218. Site-specific management demands the identification of subfield regions with homogeneous characteristics (management zones). However, determination of subfield areas is difficult because of complex correlations and spatial variability of soil properties responsible for variations in crop yields within the field. We evaluated whether apparent electrical conductivity (ECa) is a potential estimator of soil properties, and a tool for the delimitation of homogeneous zones. ECamapping of a total of 647 ha was performed in four sites of Argentinean pampas, with two fields per site composed of several soil series. Soil properties and ECawere analyzed using principal components (PC)–stepwise regression and ANOVA. The PC–stepwise regression showed that clay, soil organic matter (SOM), cation exchange capacity (CEC) and soil gravimetric water content (θg) are key loading factors, for explaining the ECa(R2≥0.50). In contrast, silt, sand, extract electrical conductivity (ECext), pH values and [Formula: see text]-N content were not able to explain the ECa. The ANOVA showed that ECameasurements successfully delimited three homogeneous soil zones associated with spatial distribution of clay, soil moisture, CEC, SOM content and pH. These results suggest that field-scale ECamaps have the potential to design sampling zones to implement site-specific management strategies.


2018 ◽  
Vol 217 ◽  
pp. 11-19 ◽  
Author(s):  
Sushil Thapa ◽  
Kirk E. Jessup ◽  
Gautam P. Pradhan ◽  
Jackie C. Rudd ◽  
Shuyu Liu ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 82 ◽  
Author(s):  
Steven Mauget ◽  
Mauricio Ulloa ◽  
Jane Dever

Cotton planting date effects in the U.S. Southern High Plains (SHP) were evaluated based on 11 years of May-planted and June-planted irrigated variety trials. Multiple cultivars planted in each year’s trial allowed for the calculation of 153 yield effects and 162 effects in 5 fiber quality parameters. Yield and quality effects were considered in the context of related changes in total growing season degree days (GDDS) and total cool hours (CHRS) during a boll formation period 80 to 110 days after planting. May planting increased GDDS and significantly increased yields in 8 of 10 years that comparisons could be made. Micronaire and fiber elongation were the most sensitive quality parameters to planting date. June planting resulted in increased CHRS every year and a significantly higher incidence of low micronaire in 7 of 11 years. In 7 of 11 years May planting significantly reduced fiber elongation relative to June planting. Analysis of SHP temperature data show that late-April to early-May planting dates may increase yield and micronaire by maximizing GDDS and minimizing CHRS. Although this practice may be optimal to the SHP environment it may also require high-vigor seed and pre-planting irrigation. Adapting genetics to an early planting strategy might include selecting for improved seed vigor and cold germination with acceptable yield and fiber quality traits.


2015 ◽  
Vol 162 ◽  
pp. 33-46 ◽  
Author(s):  
Terry A. Howell ◽  
Steven R. Evett ◽  
Judy A. Tolk ◽  
Karen S. Copeland ◽  
Thomas H. Marek

Sign in / Sign up

Export Citation Format

Share Document