scholarly journals Transcriptional Analysis of Complementary Sense Genes in Spinach curly top virus and Functional Role of C2 in Pathogenesis

2007 ◽  
Vol 20 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Surendranath Baliji ◽  
Janet Sunter ◽  
Garry Sunter

Spinach curly top virus (SCTV), the fifth characterized Curtovirus species belonging to the family Geminiviridae, is an agriculturally significant plant pathogen representing an emerging disease threat in the southern United States. The SCTV genome comprises a single DNA chromosome of approximately 3.0 kb, with the potential to code for seven proteins larger than 10 kDa but which relies extensively on the host for replication and transcription of its genome. In this study, we have identified viral and complementary sense transcripts in SCTV-infected plants, confirming a bidirectional transcription strategy for SCTV. The most abundant RNA maps to the virion sense (1.1-kb transcript) and is comparable in size and location to that observed in Beet curly top virus (BCTV). Two complementary sense transcripts (1.7 and 0.7 kb) were identified in SCTV-infected plants. The large, 1.7-kb transcript is comparable in size and position to that identified in BCTV and several begomoviruses and most likely encodes the C1 protein. Both complementary sense RNAs could potentially direct expression of C2 and C3 from polycistronic mRNAs. A mutation in the C2 gene of SCTV results in expression of a truncated protein of 38 amino acids that is capable of interacting with two cellular kinases, AKIN11 and ADK2, and the resulting mutant virus remains highly infectious. A second mutant virus can only express the first three amino acids of the C2 protein and is unable to interact with the same kinases. However, this mutant virus still remains infectious, although a reduction in infectivity and symptom severity was seen in both Arabidopsis and spinach. A possible relationship between the interaction of C2 with AKIN11 and ADK2 and disease severity is presented.

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00528-18 ◽  
Author(s):  
Richard C. White ◽  
Felizza F. Gunderson ◽  
Jessica Y. Tyson ◽  
Katherine H. Richardson ◽  
Theo J. Portlock ◽  
...  

ABSTRACTLegionella pneumophilagenes encoding LapA, LapB, and PlaC were identified as the most highly upregulated type II secretion (T2S) genes during infection ofAcanthamoeba castellanii, although these genes had been considered dispensable on the basis of the behavior of mutants lacking eitherlapAandlapBorplaC. AplaCmutant showed even higher levels oflapAandlapBtranscripts, and alapA lapBmutant showed heightening ofplaCmRNA levels, suggesting that the role of the LapA/B aminopeptidase is compensatory with respect to that of the PlaC acyltransferase. Hence, we made double mutants and found thatlapA plaCmutants have an ~50-fold defect during infection ofA. castellanii. These data revealed, for the first time, the importance of LapA in any sort of infection; thus, we purified LapA and defined its crystal structure, activation by another T2S-dependent protease (ProA), and broad substrate specificity. When the amoebal infection medium was supplemented with amino acids, the defect of thelapA plaCmutant was reversed, implying that LapA generates amino acids for nutrition. Since the LapA and PlaC data did not fully explain the role of T2S in infection, we identified, via proteomic analysis, a novel secreted protein (NttD) that promotes infection ofA. castellanii. AlapA plaC nttDmutant displayed an even greater (100-fold) defect, demonstrating that the LapA, PlaC, and NttD data explain, to a significant degree, the importance of T2S. LapA-, PlaC-, and NttD-like proteins had distinct distribution patterns within and outside theLegionellagenus. LapA was notable for having as its closest homologue anA. castellaniiprotein.IMPORTANCETransmission ofL. pneumophilato humans is facilitated by its ability to grow inAcanthamoebaspecies. We previously documented that type II secretion (T2S) promotesL. pneumophilainfection ofA. castellanii. Utilizing transcriptional analysis and proteomics, double and triple mutants, and crystal structures, we defined three secreted substrates/effectors that largely clarify the role of T2S during infection ofA. castellanii. Particularly interesting are the unique functional overlap between an acyltransferase (PlaC) and aminopeptidase (LapA), the broad substrate specificity and eukaryotic-protein-like character of LapA, and the novelty of NttD. Linking LapA to amino acid acquisition, we defined, for the first time, the importance of secreted aminopeptidases in intracellular infection. Bioinformatic investigation, not previously applied to T2S, revealed that effectors originate from diverse sources and distribute within theLegionellagenus in unique ways. The results of this study represent a major advance in understandingLegionellaecology and pathogenesis, bacterial secretion, and the evolution of intracellular parasitism.


1998 ◽  
Vol 141 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Christoph Claas ◽  
Simone Seiter ◽  
Andreas Claas ◽  
Larissa Savelyeva ◽  
Manfred Schwab ◽  
...  

Recently, we have described a panel of metastasis-associated antigens in the rat, i.e., of molecules expressed on metastasizing, but not on nonmetastasizing tumor lines. One of these molecules, recognized by the monoclonal antibody D6.1 and named accordingly D6.1A, was found to be abundantly expressed predominantly on mesenchyme-derived cells. The DNA of the antigen has been isolated and cloned. Surprisingly, the gene product proved to interfere strongly with coagulation. The 1.182-kb cDNA codes for a 235–amino acid long molecule with a 74.2% homology in the nucleotide and a 70% homology in the amino acid sequence to CO-029, a human tumor-associated molecule. According to the distribution of hydrophobic and hydrophilic amino acids, D6.1A belongs to the tetraspanin superfamily. Western blotting of D6.1A-positive metastasizing tumor lines revealed that the D6.1A, like many tetraspanin molecules, is linked to further membrane molecules, one of which could be identified as α6β1 integrin. Transfection of a low-metastasizing tumor cell line with D6.1A cDNA resulted in increased metastatic potential and provided a clue as to the functional role of D6.1A. We noted massive bleeding around the metastases and, possibly as a consequence, local infarctions predominantly in the mesenteric region and all signs of a consumption coagulopathy. By application of the D6.1 antibody the coagulopathy was counterregulated, though not prevented. It has been known for many years that tumor growth and progression is frequently accompanied by thrombotic disorders. Our data suggest that the phenomenon could well be associated with the expression of tetraspanin molecules.


2019 ◽  
Vol 36 (6) ◽  
pp. 1668-1672 ◽  
Author(s):  
Sergey V Tarlachkov ◽  
Taras V Shevchuk ◽  
Maria del Carmen Montero-Calasanz ◽  
Irina P Starodumova

Abstract Motivation A small amount of research is focused on investigation of rhodopsins in cultivated bacteria isolated from non-aquatic environments. Furthermore, the abundance of these proteins in strains from hot and arid habitats was not reported previously. Since there is an insignificant amount of such isolates, the enigmatic role of the rhodopsins in dry ecological niches is still poorly understood. The members of the family Geodermatophilaceae could be used as interesting objects to search for new rhodopsin genes that will provide novel insights into versatility and importance of these proteins in non-aquatic conditions. Results This is the first report of the abundance of different rhodopsins in cultivated bacteria isolated from hot and arid ecological niches. A total of 31 rhodopsin genes were identified in 51 analyzed genomes of strains belonging to the family Geodermatophilaceae. Overall, 88% of the strains harbouring rhodopsins are isolated from non-aquatic environments. It was found that 82% of strains belonging to the genus Geodermatophilus have at least one gene as compared to 38% of strains of other genera which contain rhodopsins. Analysis of key amino acids revealed two types of the studied proteins: DTE type (putative proton pump) and NDQ type (putative sodium pump). Proton pumps were divided into two subtypes (DTEW and DTEF) according to phylogenetic analysis and the presence of highly conserved tryptophan or phenylalanine at position 182. Among all studied rhodopsins DTEF subtype is the most unique one, identified only in this family. Supplementary information Supplementary data are available at Bioinformatics online.


2022 ◽  
pp. 101715
Author(s):  
Woo Kyun Kim ◽  
Amit Kumar Singh ◽  
Jinquan Wang ◽  
Todd Applegate

Sign in / Sign up

Export Citation Format

Share Document