scholarly journals Nodulation Gene Mutants of Mesorhizobium loti R7A—nodZ and nolL Mutants Have Host-Specific Phenotypes on Lotus spp.

2009 ◽  
Vol 22 (12) ◽  
pp. 1546-1554 ◽  
Author(s):  
Patsarin Rodpothong ◽  
John T. Sullivan ◽  
Kriangsak Songsrirote ◽  
David Sumpton ◽  
Kenneth W. J.-T. Cheung ◽  
...  

Rhizobial Nod factors induce plant responses and facilitate bacterial infection, leading to the development of nitrogen-fixing root nodules on host legumes. Nodule initiation is highly dependent on Nod-factor structure and, hence, on at least some of the nodulation genes that encode Nod-factor production. Here, we report the effects of mutations in Mesorhizobium loti R7A nodulation genes on nodulation of four Lotus spp. and on Nod-factor structure. Most mutants, including a ΔnodSΔnolO double mutant that produced Nod factors lacking the carbamoyl and possibly N-methyl groups on the nonreducing terminal residue, were unaffected for nodulation. R7AΔnodZ and R7AΔnolL mutants that produced Nod factors without the (acetyl)fucose on the reducing terminal residue had a host-specific phenotype, forming mainly uninfected nodule primordia on Lotus filicaulis and L. corniculatus and effective nodules with a delay on L. japonicus. The mutants also showed significantly reduced infection thread formation and Nin gene induction. In planta complementation experiments further suggested that the acetylfucose was important for balanced signaling in response to Nod factor by the L. japonicus NFR1/NFR5 receptors. Overall the results reveal differences in the sensitivity of plant perception with respect to signaling leading to root hair deformation and nodule primordium development versus infection thread formation and rhizobial entry.

2017 ◽  
Vol 30 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Yasuyuki Kawaharada ◽  
Euan K. James ◽  
Simon Kelly ◽  
Niels Sandal ◽  
Jens Stougaard

Several hundred genes are transcriptionally regulated during infection-thread formation and development of nitrogen-fixing root nodules. We have characterized a set of Lotus japonicus mutants impaired in root-nodule formation and found that the causative gene, Ern1, encodes a protein with a characteristic APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription-factor domain. Phenotypic characterization of four ern1 alleles shows that infection pockets are formed but root-hair infection threads are absent. Formation of root-nodule primordia is delayed and no normal transcellular infection threads are found in the infected nodules. Corroborating the role of ERN1 (ERF Required for Nodulation1) in nodule organogenesis, spontaneous nodulation induced by an autoactive CCaMK and cytokinin–induced nodule primordia were not observed in ern1 mutants. Expression of Ern1 is induced in the susceptible zone by Nod factor treatment or rhizobial inoculation. At the cellular level, the pErn1:GUS reporter is highly expressed in root epidermal cells of the susceptible zone and in the cortical cells that form nodule primordia. The genetic regulation of this cellular expression pattern was further investigated in symbiotic mutants. Nod factor induction of Ern1 in epidermal cells was found to depend on Nfr1, Cyclops, and Nsp2 but was independent of Nin and Nf-ya1. These results suggest that ERN1 functions as a transcriptional regulator involved in the formation of infection threads and development of nodule primordia and may coordinate these two processes.


2007 ◽  
Vol 189 (22) ◽  
pp. 8347-8352 ◽  
Author(s):  
Shin Okazaki ◽  
Yoshiyuki Hattori ◽  
Kazuhiko Saeki

ABSTRACT The purB and purH mutants of Mesorhizobium loti exhibited purine auxotrophy and nodulation deficiency on Lotus japonicus. In the presence of adenine, only the purH mutant induced nodule formation and the purB mutant produced few infection threads, suggesting that 5-aminoimidazole-4-carboxamide ribonucleotide biosynthesis catalyzed by PurB is required for the establishment of symbiosis.


1958 ◽  
Vol 11 (2) ◽  
pp. 155 ◽  
Author(s):  
Hilary F Purchase

Clover and lucerne roots from plants grown in tube culture were examined for infection thread formation and nodule number. The number of infection threads was about equal to the number of nodules in Trifolium pratense L.; this relation was shown to hold for abundantly and sparsely nodulating plants and for bacterial inocula.nts producing large and small numbers of nodules.


1996 ◽  
Vol 151 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Graciela Brelles-Mariño ◽  
Guillermo A. Costa ◽  
José L. Boiardi

1969 ◽  
Vol 15 (10) ◽  
pp. 1133-1136 ◽  
Author(s):  
Diana Li ◽  
D. H. Hubbell

The basis for determination of nodulating specificity in Rhizobium–clover associations was investigated. Thirteen strains of rhizobia from eight different cross-inoculation groups were used to inoculate aseptically grown strawberry clover seedlings in slide culture. Microscopic observation revealed that each strain produced characteristic root hair deformation but infection threads and nodules were observed only in the homologous combination. It is concluded that, in rhizobia–clover combinations which nodulate via infection threads, specificity is determined at or before infection thread initiation. Observations of other workers that rhizobia produce a strain-specific substance affecting growth and morphology of legume root hairs were confirmed by results of this study.


2015 ◽  
Vol 167 (4) ◽  
pp. 1233-1242 ◽  
Author(s):  
Joëlle Fournier ◽  
Alice Teillet ◽  
Mireille Chabaud ◽  
Sergey Ivanov ◽  
Andrea Genre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document