scholarly journals The Medicago truncatula N5 Gene Encoding a Root-Specific Lipid Transfer Protein Is Required for the Symbiotic Interaction with Sinorhizobium meliloti

2009 ◽  
Vol 22 (12) ◽  
pp. 1577-1587 ◽  
Author(s):  
Youry Pii ◽  
Alessandra Astegno ◽  
Elisa Peroni ◽  
Massimo Zaccardelli ◽  
Tiziana Pandolfini ◽  
...  

The Medicago truncatula N5 gene is induced in roots after Sinorhizobium meliloti infection and it codes for a putative lipid transfer protein (LTP), a family of plant small proteins capable of binding and transferring lipids between membranes in vitro. Various biological roles for plant LTP in vivo have been proposed, including defense against pathogens and modulation of plant development. The aim of this study was to shed light on the role of MtN5 in the symbiotic interaction between M. truncatula and S. meliloti. MtN5 cDNA was cloned and the mature MtN5 protein expressed in Escherichia coli. The lipid binding capacity and antimicrobial activity of the recombinant MtN5 protein were tested in vitro. MtN5 showed the capacity to bind lysophospholipids and to inhibit M. truncatula pathogens and symbiont growth in vitro. Furthermore, MtN5 was upregulated in roots after infection with either the fungal pathogen Fusarium semitectum or the symbiont S. meliloti. Upon S. meliloti infection, MtN5 was induced starting from 1 day after inoculation (dpi). It reached the highest concentration at 3 dpi and it was localized in the mature nodules. MtN5-silenced roots were impaired in nodulation, showing a 50% of reduction in the number of nodules compared with control roots. On the other hand, transgenic roots overexpressing MtN5 developed threefold more nodules with respect to control roots. Here, we demonstrate that MtN5 possesses biochemical features typical of LTP and that it is required for the successful symbiotic association between M. truncatula and S. meliloti.

2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Álan C. Maracahipes ◽  
Gabriel B. Taveira ◽  
Erica O. Mello ◽  
André O. Carvalho ◽  
Rosana Rodrigues ◽  
...  

Abstract There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides. The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml−1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and β-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi ‘in vitro’. There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.


1997 ◽  
Vol 324 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Karel. W. A WIRTZ

Phosphatidylinositol transfer protein (PI-TP) and the non-specific lipid transfer protein (nsL-TP) (identical with sterol carrier protein 2) belong to the large and diverse family of intracellular lipid-binding proteins. Although these two proteins may express a comparable phospholipid transfer activity in vitro, recent studies in yeast and mammalian cells have indicated that they serve completely different functions. PI-TP (identical with yeast SEC14p) plays an important role in vesicle flow both in the budding reaction from the trans-Golgi network and in the fusion reaction with the plasma membrane. In yeast, vesicle budding is linked to PI-TP regulating Golgi phosphatidylcholine (PC) biosynthesis with the apparent purpose of maintaining an optimal PI/PC ratio of the Golgi complex. In mammalian cells, vesicle flow appears to be dependent on PI-TP stimulating phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis. This latter process may also be linked to the ability of PI-TP to reconstitute the receptor-controlled PIP2-specific phospholipase C activity. The nsL-TP is a peroxisomal protein which, by its ability to bind fatty acyl-CoAs, is most likely involved in the β-oxidation of fatty acids in this organelle. This protein constitutes the N-terminus of the 58 kDa protein which is one of the peroxisomal 3-oxo-acyl-CoA thiolases. Further studies on these and other known phospholipid transfer proteins are bound to reveal new insights in their important role as mediators between lipid metabolism and cell functions.


Biochimie ◽  
2018 ◽  
Vol 149 ◽  
pp. 9-17 ◽  
Author(s):  
Adson A. Souza ◽  
Andrea S. Costa ◽  
Dyély C.O. Campos ◽  
Andressa H.M. Batista ◽  
Gleilton W.P. Sales ◽  
...  

2013 ◽  
Vol 111 (6) ◽  
pp. 571-573 ◽  
Author(s):  
Felicia Berroa ◽  
Gabriel Gastaminza ◽  
Noemí Saiz ◽  
Julián Azofra ◽  
Pedro M. Gamboa ◽  
...  

2007 ◽  
Vol 204 (3) ◽  
pp. 533-545 ◽  
Author(s):  
Stephanie K. Dougan ◽  
Paul Rava ◽  
M. Mahmood Hussain ◽  
Richard S. Blumberg

Microsomal triglyceride transfer protein (MTP), an endoplasmic reticulum lipid transfer protein critical for apolipoprotein B (apoB) secretion, regulates CD1d antigen presentation. We identified MTP variant 1 (MTPv1), a novel splice variant of mouse MTP, by polymerase chain reaction and Northern analysis in non–apoB-secreting tissues, including thymocytes and antigen-presenting cells (APCs). Edman degradation of MTPv1 isolated from transfected cells revealed three unique residues; however, recombinant MTP and MTPv1 had an equivalent protein disulfide isomerase association, subcellular localization, triglyceride transfer, phospholipid transfer, response to inhibitors, and ability to support apoB secretion. MTP and MTPv1 efficiently transferred phosphatidylethanolamine to CD1d in vitro. NKT cells fail to develop in fetal thymic organ culture (FTOC) treated with MTP antagonists. MTP-inhibited FTOCs produced negligible numbers of CD1d tetramer–positive cells and exhibited marked defects in IL-4 production upon stimulation with anti-CD3 or α-galactosylceramide–pulsed APCs. CD1d expression on CD4+CD8+ FTOC cells was unaffected by MTP inhibition. Thus, our results demonstrate that MTPv1 in thymocytes is critical to NKT cell development. We hypothesize that, when MTP is inactive, CD1d traffics to the cell surface and presents no lipid or a lipid that is incapable of mediating NKT cell selection and/or is refractory to lysosomal editing.


2001 ◽  
Vol 107 (4) ◽  
pp. 724-731 ◽  
Author(s):  
Stephan Scheurer ◽  
Elide A. Pastorello ◽  
Andrea Wangorsch ◽  
Marion Kästner ◽  
Dieter Haustein ◽  
...  

2019 ◽  
Vol 218 (6) ◽  
pp. 1787-1798 ◽  
Author(s):  
Diana P. Valverde ◽  
Shenliang Yu ◽  
Venkata Boggavarapu ◽  
Nikit Kumar ◽  
Joshua A. Lees ◽  
...  

During macroautophagic stress, autophagosomes can be produced continuously and in high numbers. Many different organelles have been reported as potential donor membranes for this sustained autophagosome growth, but specific machinery to support the delivery of lipid to the growing autophagosome membrane has remained unknown. Here we show that the autophagy protein, ATG2, without a clear function since its discovery over 20 yr ago, is in fact a lipid-transfer protein likely operating at the ER–autophagosome interface. ATG2A can bind tens of glycerophospholipids at once and transfers lipids robustly in vitro. An N-terminal fragment of ATG2A that supports lipid transfer in vitro is both necessary and fully sufficient to rescue blocked autophagosome biogenesis in ATG2A/ATG2B KO cells, implying that regulation of lipid homeostasis is the major autophagy-dependent activity of this protein and, by extension, that protein-mediated lipid transfer across contact sites is a principal contributor to autophagosome formation.


Sign in / Sign up

Export Citation Format

Share Document