microsomal triglyceride transfer protein
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 36)

H-INDEX

60
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Monika Kowalczyk ◽  
Aleksandra Golonko ◽  
Renata Świsłocka ◽  
Monika Kalinowska ◽  
Monika Parcheta ◽  
...  

The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell’s biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1566
Author(s):  
Yongxiao Yang ◽  
Peng Li ◽  
Pan Wang ◽  
Baoting Zhu

Human microsomal triglyceride transfer protein (hMTP) plays an essential role in the assembly of apoB-containing lipoproteins, and has become an important drug target for the treatment of several disease states, such as abetalipoproteinemia, fat malabsorption and familial hypercholesterolemia. hMTP is a heterodimer composed of a larger hMTPα subunit and a smaller hMTPβ subunit (namely, protein disulfide isomerase, hPDI). hPDI can interact with 17β-estradiol (E2), an endogenous female sex hormone. It has been reported that E2 can significantly reduce the blood levels of low-density lipoprotein, cholesterol and triglyceride, and modulate liver lipid metabolism in vivo. However, some of the estrogen’s actions on lipid metabolism are not associated with estrogen receptors (ER), and the exact mechanism underlying estrogen’s ER-independent lipid-modulating action is still not clear at present. In this study, the potential influence of E2 on the stability of the hMTP complex is investigated by jointly using multiple molecular dynamics analyses based on available experimental structures. The molecular dynamics analyses indicate that the hMTP complex in the presence of E2 has reduced interface contacts and surface areas. A steered molecular dynamics analysis shows that the forces required to separate the two subunits (namely, hPDI and hMTPα subunit) of the hMTP complex in the absence of E2 are significantly higher than the forces required to separate the complex in which its hPDI is already bound with E2. E2 makes the interface between hMTPα and hPDI subunits more flexible and less stable. The results of this study suggest that E2-induced conformational changes of the hMTP complex might be a novel mechanism partly accounting for the ER-independent lipid-modulating effect of E2.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 714
Author(s):  
Amr Ali Hemeda ◽  
Amal Ahmad Mohamed ◽  
Ramy Karam Aziz ◽  
Mohamed S. Abdel-Hakeem ◽  
Marwa Ali-Tammam

Complications of hepatitis C virus (HCV) chronic infection cause ~400,000 deaths worldwide annually. One complication, liver fibrosis, is influenced by host genetic factors. Genes influencing fibrosis include immune, metabolic, oxidative stress, and viral entry genes, such as interleukin 10 (IL10), microsomal triglyceride-transfer protein (MTP), superoxide dismutase-2 (SOD2), and apolipoprotein E (APOE)-encoding genes, respectively. Thus, correlating variations in these genes with HCV-induced fibrosis represents an attractive biomarker for the prognosis of fibrosis severity in chronically infected patients. Here, we aimed to test whether polymorphisms in IL10, MTP, SOD2, and APOE genes correlated with the severity of fibrosis induced by HCV genotype 4 (HCV-gt4) in a cohort of chronically infected Egyptian patients. Our results demonstrate a significant association between the severity of fibrosis and specific SNPs in IL-10, SOD2, and ApoE-encoding genes. Haplotype-combination analysis for IL10, MTP, SOD2, and APOE showed statistically significant associations between specific haplotype combinations and fibrosis severity. Identifying biomarkers correlating with the severity of HCV-gt4-induced fibrosis would significantly impact precision prophylaxis and treatment of patients at risk.


2021 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes for the discovery of genes associated with brain metastasis in humans with metastatic breast cancer. We found that microsomal triglyceride transfer protein, encoded by MTTP, was among the genes whose expression was most different in the brain metastases of patients with metastatic breast cancer as compared to primary tumors of the breast. MTTP mRNA was present at decreased quantities in brain metastatic tissues as compared to primary tumors of the breast. Importantly, expression of MTTP in primary tumors was significantly correlated with patient recurrence-free survival. Modulation of MTTP expression may be relevant to the biology by which tumor cells metastasize from the breast to the brain in humans with metastatic breast cancer.


Author(s):  
Jorge Simón ◽  
Naroa Goikoetxea-Usandizaga ◽  
Marina Serrano-Maciá ◽  
David Fernández-Ramos ◽  
Diego Sáenz de Urturi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document