Fluorescent Pseudomonads Associated with Bacterial Canker of Stone Fruit in South Africa

Plant Disease ◽  
1983 ◽  
Vol 67 (11) ◽  
pp. 1267 ◽  
Author(s):  
Isabel M. M. Roos
Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 882-892 ◽  
Author(s):  
Khumbuzile N. Bophela ◽  
Yolanda Petersen ◽  
Carolee. T. Bull ◽  
Teresa. A. Coutinho

Bacterial canker is a common bacterial disease of stone fruit trees. The causal agents responsible for the disease include several pathovars in Pseudomonas syringae sensu lato and newly described Pseudomonas species. Pseudomonad strains were isolated from symptomatic stone fruit trees, namely apricot, peach, and plum trees cultivated in spatially separated orchards in the Western Cape. A polyphasic approach was used to identify and characterize these strains. Using a multilocus sequence typing approach of four housekeeping loci, namely cts, gapA, gyrB, and rpoD, the pseudomonad strains were delineated into two phylogenetic groups within P. syringae sensu lato: P. syringae sensu stricto and Pseudomonas viridiflava. These results were further supported by LOPAT diagnostic assays and analysis of clades in the rep-PCR dendrogram. The pseudomonad strains were pathogenic on both apricot and plum seedlings, indicative of a lack of host specificity between Pseudomonas strains infecting Prunus spp. This is a first report of P. viridiflava isolated from plum trees showing symptoms of bacterial canker. P. viridiflava is considered to be an opportunistic pathogen that causes foliar diseases of vegetable crops, fruit trees, and aromatic herbs, and thus the isolation of pathogenic P. viridiflava from twigs of plum trees showing symptoms of bacterial canker suggests that this bacterial species is a potentially emerging stem canker pathogen of stone fruit trees in South Africa.


Hilgardia ◽  
1933 ◽  
Vol 8 (3) ◽  
pp. 83-123 ◽  
Author(s):  
Edward E. Wilson

Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1402-1409 ◽  
Author(s):  
Providence Moyo ◽  
Ulrike Damm ◽  
Lizel Mostert ◽  
Francois Halleen

Stone fruit trees (Prunus spp.) are economically important fruit trees cultivated in South Africa. These trees are often grown in close proximity to vineyards and are to a large extent affected by the same trunk disease pathogens as grapevines. The aim of the present study was to determine whether stone fruit trees are inhabited by Diatrypaceae species known from grapevines and whether these trees could act as alternative hosts for these fungal species. Isolations were carried out from symptomatic wood of Prunus species (almond, apricot, cherry, nectarine, peach, and plum) in stone fruit growing areas in South Africa. Identification of isolates was based on phylogenetic analyses of the internal transcribed spacer region and β-tubulin gene. Forty-six Diatrypaceae isolates were obtained from a total of 380 wood samples, from which five species were identified. All five species have also been associated with dieback of grapevine. The highest number of isolates was found on apricot followed by plum. No Diatrypaceae species were isolated from peach and nectarine. Eutypa lata was the dominant species isolated (26 isolates), followed by Cryptovalsa ampelina (7), Eutypa cremea (5), Eutypella citricola (5), and Eutypella microtheca (3). First reports from Prunus spp. are E. cremea, E. citricola, and E. microtheca. Pathogenicity tests conducted on apricot and plum revealed that all these species are pathogenic to these hosts, causing red-brown necrotic lesions like those typical of Eutypa dieback on apricot.


2017 ◽  
Vol 151 (2) ◽  
pp. 427-438
Author(s):  
M. Otto ◽  
Y. Petersen ◽  
J. Roux ◽  
J. Wright ◽  
T. A. Coutinho

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1126
Author(s):  
Allen Kerr ◽  
Gary Bullard

The biocontrol of crown gall has been practised in Australia for 48 years. Control is so efficient that it is difficult to find a galled stone fruit tree, when previously, crown gall had been a major problem. This paper explains how it works and why only pathogens are inhibited. A commercial biopesticide is available in Australia, Canada, Chile, New Zealand, Turkey, the USA, South Africa and Japan. The challenges of commercialising a biopesticide are outlined. Rigid regulations are preventing the wider use of biocontrol organisms.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rhona van der Merwe ◽  
Francois Halleen ◽  
Meagan Van Dyk ◽  
Vernon Guy Jacobs ◽  
Lizel Mostert

Dieback and canker of young stone fruit trees can cause suboptimal growth and even death under severe conditions. One source of inoculum of canker pathogens could be through nursery trees harboring latent infections that would not be visible to inspections done according to the deciduous fruit scheme. The objectives of this study were to identify the canker and wood rot fungal pathogens present in nursery stone fruit trees as well as propagation material and to evaluate their pathogenicity. Isolations were made from scion and rootstock propagation material and from certified nursery stone fruit trees. The plant material sampled did not have any external symptoms. The certified nursery trees when cross-sectioned displayed brown discoloration from the pruning wound, bud union and often from the crown. Fungal species isolated were identified by sequencing of the relevant barcoding genes and phylogenetic analyses thereof. Canker and wood rot associated fungi were identified. Buds used for budding had low levels of infection, with 1.2% of dormant buds infected and 0.4% of green buds infected. The dormant rootstock shoots had canker pathogen incidence of 6.2% before it was planted in the nursery fields and increased as the ungrafted, rooted rootstock plants had 11.1% infection with canker and wood rot pathogens. Out of 1080 nursery trees, the canker and wood rot associated fungi infected 21.8% of trees. The canker causing pathogens that were isolated the most were Cadophora luteo-olivacea and Diplodia seriata. A low incidence of wood rot fungi was found with only 1.5% of nursery trees infected. In total 26 new reports of fungal species on stone fruit in South Africa were made. Of these, 22 have not been found on stone fruit world-wide. The pathogenicity trials’ results confirmed the pathogenic status of these newly reported species. All of the isolates tested formed lesions significantly longer than the control, 4 months after wound inoculation of 2-year-old shoots of two plum orchards. Lasiodiplodia theobromae was the most virulent species on both plum cultivars. The results of this research showed that nursery stone fruit trees and propagation material can harbor latent infections. Different management practices need to be evaluated to prevent these infections to ensure healthier stone fruit nursery trees.


Sign in / Sign up

Export Citation Format

Share Document