scholarly journals Resistance to Passion fruit woodiness virus in Transgenic Passionflower Expressing the Virus Coat Protein Gene

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1026-1030 ◽  
Author(s):  
F. Trevisan ◽  
B. M. J. Mendes ◽  
S. C. Maciel ◽  
M. L. C. Vieira ◽  
L. M. M. Meletti ◽  
...  

We report the use of the coat protein (CP) gene from Passion fruit woodiness virus (PWV) to produce resistant transgenic plants of yellow passion fruit. A full-length CP gene from a severe PWV isolate from the state of São Paulo, Brazil (PWV-SP) was cloned into pCAMBIA 2300 binary vector, which was further introduced into Agrobacterium tumefaciens strain EHA 105. Leaf disks were used as explants for transformation assays, e.g., 2,700 and 2,730 disks excised from plants from the Brazilian cultivars IAC-275 and IAC-277, respectively. In vitro selection was performed in kanamycin. After transferring to the elongation medium, 119 and 109 plantlets of IAC-275 and IAC-277, respectively, were recovered. Integration of the PWV CP gene was confirmed in seven of eight plants evaluated by Southern blot analysis, showing different numbers of insertional events for the CP gene. Three transgenic plants (T3, T4, and T7) expressed the expected transcript, but the 32 kDa PWV CP was detected by Western blot in only two plants (T3 and T4). The results of three successive mechanical inoculations against the transgenic plants using three PWV isolates showed that the primary transformant T2 of IAC-277 was immune to all isolates.

2011 ◽  
Vol 108 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Patrícia Silva Flores ◽  
Wagner Campos Otoni ◽  
Onkar Dev Dhingra ◽  
Sérgio Paulo Severo de Souza Diniz ◽  
Telma Miranda dos Santos ◽  
...  

2001 ◽  
Vol 356 (3) ◽  
pp. 867-873 ◽  
Author(s):  
Kay STUBENRAUCH ◽  
Stefan GLEITER ◽  
Ulrich BRINKMANN ◽  
Rainer RUDOLPH ◽  
Hauke LILIE

The development of cell-type-specific delivery systems is highly desirable for gene-therapeutic applications. Current virus-based vector systems show broad cell specificity, which results in the need to restrict the natural tropism of these viral systems. Here we demonstrate that tumour-cell-specific virus-like particles can be functionally assembled in vitro from recombinant viral coat protein expressed in Escherichia coli. The insertion of a negatively charged peptide in the HI loop of polyoma VP1 interferes with the binding of VP1 to the natural recognition site on mammalian cells and also serves as an adapter for the coupling of antibody fragments that contain complementary charged fusion peptides. A recombinant antibody fragment of the tumour-specific anti-(Lewis Y) antibody B3 could be coupled to the mutant VP1 by engineered polyionic peptides and an additional disulphide bond. With this system an entirely recombinant cell-specific delivery system assembled in vitro could be generated that transfers genes preferentially to cells presenting the tumour-specific antigen on the cell surface.


2014 ◽  
Vol 13 (36) ◽  
pp. 3657-3665 ◽  
Author(s):  
M. M. Rego, ◽  
E. R. Rego, ◽  
L. P. U. Nattrodt, ◽  
P. A. Barroso, ◽  
F. L. Finger, ◽  
...  

2006 ◽  
Vol 151 (11) ◽  
pp. 2111-2122 ◽  
Author(s):  
N. K. Kouassi ◽  
L. Chen ◽  
C. Siré ◽  
M. Bangratz-Reyser ◽  
R. N. Beachy ◽  
...  

Virology ◽  
1987 ◽  
Vol 158 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Mamoru Horikoshi ◽  
Masaharu Nakayama ◽  
Naoto Yamaoka ◽  
Iwao Furusawa ◽  
Jiko Shishiyama

2020 ◽  
Vol 22 (2) ◽  
pp. 44-52
Author(s):  
Ivan Dario Loaiza Campiño ◽  
Neftalí Mesa López ◽  
Andrés Mauricio Villegas Hiencapié

Climate change will have an impact on the Colombian agricultural sector, by 2050 increases in temperature and distribution of erratic rainfall are expected. Passion fruit cultivation does not tolerate water deficit, it reduces flower induction, generates fruit drop and defoliation. To tackle this problem, somaclonal variants (VS) of passion fruit were selected in-vitro, seeking tolerance to water deficit. Four phases were developed: I) callogenesis, II) direct and indirect organogenesis, II) Induction and evaluation of the water deficit with Polyethylene glycol 6000 (PEG 6000) and IV) in vitro selection of VS by morphometric measurements, chlorophyll and total sugars contents. Differences in callogenesis were found with different concentrations of 2,4-D, the concentration of 2 mg • L-1 presented better results producing calluses in less time and in greater quantity (8 days, 90% of the leaf area). In indirect and direct organogenesis the medium MS + ANA + BAP (0.3: 0.6), showed significant statistical differences with respect to other means, for the variables root length (15.14 cm), stem (16.72 cm) and leaves ( 14.51 cm) and root thickness (0.76 cm) stem (1.25) and leaf width (6.75). The influence of PEG 6000 showed significant differences, the treatment with 30 g • L-1 showed the smallest leaf width, the greatest width was found in 25 g • L-1. Statistical differences were found in chlorophyll levels and total sugar contents, the highest contents were recorded in the VS 25VS1, showing the possibility of obtaining seedlings tolerant to the water deficit of passion fruit by inducing somaclonal variation.


Sign in / Sign up

Export Citation Format

Share Document