scholarly journals First Report of Cucumber mosaic virus Infecting Peperomia tuisana in Serbia

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 1004-1004 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Ristić ◽  
D. Milošević ◽  
...  

Peperomia tuisana C.DC. ex Pittier (family Piperaceae) is an attractive succulent grown as an ornamental. Despite its tropical origins, it can be successfully grown indoors in any climate. In March 2012, three samples of P. tuisana showing virus-like symptoms were collected from a commercial greenhouse in Zemun (District of Belgrade, Serbia) in which estimated disease incidence was 80%. Infected plants showed symptoms including necrotic ringspots and line patterns that enlarged and caused necrosis of leaves. A serious leaf drop led to growth reduction and even death of the plant. Leaves from three symptomatic P. tuisana plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kits (Bioreba AG, Reinach, Switzerland) against the most common viral pathogens of ornamentals: Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV) (1,2). Commercial positive and negative controls were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for TSWV and INSV. The ELISA-positive sample (isolate 1-12) was mechanically inoculated onto five plants each of three test species as well as of healthy young P. tuisana using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on Chenopodium quinoa and severe mosaic and leaf malformations were observed on all inoculated Nicotiana tabacum ‘Samsun’ and N. glutinosa. Also, the virus was successfully mechanically transmitted to P. tuisana that reacted with symptoms identical to those observed on the original host plants. All mechanically inoculated plants were positive for CMV in DAS-ELISA. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed on extracts made from symptomatic P. tuisana, N. tabacum ‘Samsun,’ and N. glutinosa leaf materials. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was carried out using One-Step RT-PCR Kit (Qiagen). A CMV-specific primer pair, CMVCPfwd and CMVCPrev (3), which amplifies an 871-bp fragment of the entire coat protein (CP) gene and part of 3′- and 5′-UTRs, were used for both amplification and sequencing. Total RNAs obtained from the Serbian CMV isolate (HM065510) and healthy P. tuisana were used as positive and negative controls, respectively. A product of the correct predicted size was obtained in all naturally and mechanically infected plants, as well as positive control. No amplicon was recorded in the healthy control. The amplified product derived from isolate 1-12 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions, deposited in GenBank (KC505441), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 1-12 shared the highest nucleotide identity of 99.1% (99.5% amino acid identity) with the Japanese isolate (AB006813). To our knowledge, this is the first report on the occurrence of CMV in P. tuisana in Serbia. This is also an important discovery since P. tuisana is commonly grown together with other ornamental hosts of CMV, and thus could represent a serious threat for future expansion of CMV in the greenhouse floriculture industry in Serbia. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) S. Flasinski et al. Plant Dis. 79:843, 1995. (3) K. Milojevic et al. Plant Dis. 96:1706, 2012. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1449-1449 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Nikolić ◽  
D. Ristić ◽  
...  

Tulips (Tulipa sp. L.), popular spring-blooming perennials in the Liliaceae family, are one of the most important ornamental bulbous plants, which have been cultivated for cut flower, potted plant, garden plant, and for landscaping. In May 2013, during a survey to determine the presence of Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) on ornamentals in Serbia, virus-like symptoms, including the presence of bright streaks, stripe and distortion of leaves, and reduced growth and flower size, were observed in an open field tulip production in the Krnjaca locality (a district of Belgrade, Serbia). Disease incidence was estimated at 20%. Symptomatic tulip plants were collected and tested for the presence of CMV by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kit (Bioreba, AG, Reinach, Switzerland). Commercial positive and negative controls were included in each ELISA. Of the six tulip plants tested, all were positive for CMV. In bioassay, five plants of each Chenopodium quinoa, Nicotiana tabacum ‘Samsun,’ and N. glutinosa were mechanically inoculated with sap from selected ELISA-positive sample (79-13) using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on C. quinoa, and severe mosaic and leaf malformations on N. tabacum ‘Samsun’ and N. glutinosa, were observed 5 and 14 days post-inoculation, respectively. All mechanically inoculated plants were positive for CMV in DAS-ELISA testing. For further confirmation of CMV presence in tulip, total RNAs from all ELISA-positive symptomatic tulip plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using specific primer pair CMVCPfwd and CMVCPrev (1), which flank conserved fragment of the RNA3 including the entire coat protein (CP) gene and part of 3′- and 5′-UTRs. Total RNAs obtained from the Serbian watermelon CMV isolate (GenBank Accession No. JX280942) and healthy tulip leaves served as the positive and negative controls, respectively. The RT-PCR products of 871 bp were obtained from all six samples that were serologically positive to CMV, as well as from the positive control. No amplicon was recorded in the healthy control. The amplified product which derived from isolate 79-13 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions using the same primer pair as in RT-PCR, deposited in GenBank (KJ854451), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 79-13 shared the highest nucleotide identity of 99.2% (99% amino acid identity) with CMV isolates from Japan (AB006813) and the United States (S70105). To our knowledge, this is the first report on the occurrence of CMV causing mosaic on Tulipa sp. in Serbia. Taking into account vegetative reproduction of tulips and the large scale of international trade with tulip seeding material, as well as wide host range of CMV including a variety of ornamentals (2,3), this is a very important discovery representing a serious threat for the floriculture industry in Serbia. References: (1) K. Milojević et al. Plant Dis. 96:1706, 2012. (2) M. Samuitienė and M. Navalinskienė. Zemdirbyste-Agriculture 95:135, 2008. (3) D. Sochacki. J. Hortic. Res. 21:5, 2013. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 150-150 ◽  
Author(s):  
R. Bešta-Gajević ◽  
A. Jerković-Mujkić ◽  
S. Pilić ◽  
I. Stanković ◽  
A. Vučurović ◽  
...  

Lamium maculatum L. (spotted dead-nettle) is a flowering perennial ornamental that is commonly grown as a landscape plant for an effective ground cover. In June 2010, severe mosaic accompanied by reddish brown necrosis and leaf deformation was noticed on 80% of L. maculatum growing in shade under trees and shrubs in Sarajevo (Bosnia and Herzegovina). Leaves from 10 symptomatic L. maculatum plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kits (Bioreba AG, Reinach, Switzerland) against Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV), the most important viral pathogens of ornamental plants (1,2). Commercial positive and negative controls and extracts from healthy L. maculatum leaves were included in each assay. All samples tested negative for TSWV and INSV and positive for CMV. The virus was mechanically transmitted to test plants and young virus-free plants of L. maculatum using 0.01 M phosphate buffer (pH 7). The virus caused chlorotic local lesions on Chenopodium quinoa, while systemic mosaic was observed on Capsicum annuum ‘Rotund,’ Nicotiana rustica, N. glutinosa, N. tabacum ‘White Burley,’ and Phaseolus vulgaris ‘Top Crop.’ The virus was transmitted mechanically to L. maculatum and induced symptoms resembling those observed on the source plants. Inoculated plants were assayed by DAS-ELISA and all five inoculated plants of each species tested positive for CMV. The presence of CMV in L. maculatum as well as mechanically infected N. glutinosa plants was further confirmed by RT-PCR. Total RNA from symptomatic leaves was isolated using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) following the manufacturer's instructions. The primer pair, CMVAu1u/CMVAu2d, that amplifies the entire coat protein (CP) gene and part of 3′- and 5′-UTRs was used for both amplification and sequencing (4). Total RNA obtained from the Serbian CMV isolate from pumpkin (GenBank Accession No. HM065510) and a healthy L. maculatum plant were used as positive and negative controls, respectively. All naturally and mechanically infected plants as well as the positive control yielded an amplicon of the expected size (850 bp). No amplicon was observed in the healthy control. The amplified product derived from isolate 3-Lam was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions and deposited in GenBank (JX436358). Sequence analysis of the CP open reading frame (657 nt), conducted with MEGA5 software, revealed that the isolate 3-Lam showed the highest nucleotide identity of 99.4% (99.1% amino acid identity) with CMV isolates from Serbia, Australia, and the USA (GQ340670, U22821, and U20668, respectively). To our knowledge, this is the first report of the natural occurrence of CMV on L. maculatum worldwide and it adds a new host to over 1,241 species (101 plant families) infected by this virus (3). This is also an important discovery for the ornamental industry since L. maculatum is commonly grown together with other ornamental hosts of CMV in nurseries and the urban environment as well as in natural ecosystems. References: (1) Y. K. Chen et al. Arch. Virol. 146:1631, 2001. (2) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (3) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (4) I. Stankovic et al. Acta Virol. 55:337, 2011.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1124-1124 ◽  
Author(s):  
V. Trkulja ◽  
D. Kovačić ◽  
B. Ćurković ◽  
A. Vučurović, I. Stanković ◽  
A. Bulajić ◽  
...  

During July 2012, field-grown melon plants (Cucumis melo L.) with symptoms of mosaic, chlorotic mottling, and vein banding as well as blistering and leaf malformation were observed in one field in the locality of Kladari (municipality of Doboj, Bosnia and Herzegovina). Disease incidence was estimated at 60%. A total of 20 symptomatic plants were collected and tested with double-antibody sandwich (DAS)-ELISA using commercial polyclonal antisera (Bioreba AG, Reinach, Switzerland) against four the most commonly reported melon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV) (1,3). Commercial positive and negative controls were included in each assay. Only CMV was detected serologically in all screened melon samples. Sap from an ELISA-positive sample (162-12) was mechanically inoculated to test plants using 0.01 M phosphate buffer (pH 7.0). The virus caused necrotic local lesions on Chenopodium amaranticolor 5 days after inoculation, while mild to severe mosaic was observed on Nicotiana rustica, N. glutinosa, N. tabacum ‘Samsun,’ Cucurbita pepo ‘Ezra F1,’ and Cucumis melo ‘Ananas’ 10 to 14 days post-inoculation. All five inoculated plants of each experimental host were DAS-ELISA positive for CMV. The presence of CMV in all naturally and mechanically infected plants was further verified by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions and used as template in RT-PCR. RT-PCR was carried out with the One-Step RT-PCR Kit (Qiagen) using primer pair CMVCPfwd and CMVCPrev (4), amplifying the entire coat protein (CP) gene and part of 3′- and 5′-UTRs of CMV RNA 3. Total RNAs obtained from the Serbian CMV isolate from Cucurbita pepo ‘Olinka’ (GenBank Accession No. HM065510) and healthy melon leaves were used as positive and negative controls, respectively. An amplicon of the correct predicted size (871 bp) was obtained from all naturally and mechanically infected plants as well as from positive control, but not from healthy tissues. The amplified product derived from isolate 162-12 was purified with QIAquick PCR Purification Kit (Qiagen) and sequenced directly using the same primer pair as in RT-PCR (KC559757). Multiple sequence alignment of the 162-12 isolate CP sequence with those available in GenBank, conducted with MEGA5 software, revealed that melon isolate from Bosnia and Herzegovina showed the highest nucleotide identity of 99.7% (100% amino acid identity) with eight CMV isolates originating from various hosts from Serbia (GQ340670), Spain (AJ829770 and 76, AM183119), the United States (U20668, D10538), Australia (U22821), and France (X16386). Despite the fact that CMV is well established in majority of Mediterranean countries and represents an important threat for many agriculture crops, including pepper in Bosnia and Herzegovina (2), to our knowledge, this is the first report of CMV infecting melon in Bosnia and Herzegovina. Melon popularity as well as production value has been rising rapidly and the presence of CMV may have a drastic economic impact on production of this crop in Bosnia and Herzegovina. References: (1) E. E. Grafton-Cardwell et al. Plant Dis. 80:1092, 1996. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) M. Luis-Arteaga et al. Plant Dis. 82:979, 1998. (4) K. Milojević et al. Plant Dis. 96:1706, 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1706-1706 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Ristić ◽  
D. Nikolić ◽  
...  

In June 2012, field-grown watermelon plants (Citrullus lanatus L.) with virus-like symptoms were observed in Silbaš locality, South Backa District of Serbia. Plants infected early in the growing season showed severe symptoms including stunting, mosaic, mottling, blistering, and leaf curling with reduced leaf size, while those infected at later stages exhibited only a mild mosaic. Affected plants were spread across the field and disease incidence was estimated at 40%. Thirteen symptomatic watermelon plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using a commercial diagnostic kit (Bioreba AG, Reinach, Switzerland) against the most important watermelon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), Papaya ringspot virus (PRSV), and Squash mosaic virus (SqMV) (1). Commercial positive and negative controls and an extract from healthy watermelon tissue were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for ZYMV, WMV, PRSV, and SqMV. The virus was mechanically transmitted from an ELISA-positive sample (449-12) to five plants of each Citrullus lanatus ‘Creamson sweet’ and Chenopodium amaranticolor using 0.01 M phosphate buffer (pH 7) with Serbian CMV isolate from Cucurbita pepo ‘Olinka’ (GenBank Accession No. HM065510) and healthy watermelon plants as positive and negative controls, respectively. Small necrotic lesions on C. amaranticolor and mild mosaic with dark green vein banding on watermelon leaves were observed on all inoculated plants 5 and 14 days post-inoculation, respectively. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen, Hilden, Germany) using specific primers CMVCPfwd (5′-TGCTTCTCCRCGARWTTGCGT-3′) and CMVCPrev (5′-CGTAGCTGGATGGACAACCCG-3′), designed to amplify an 871-bp fragment of the RNA3 including the whole CP gene. Total RNA from 12 naturally infected and five mechanically infected watermelon plants was extracted with the RNease Plant Mini Kit (Qiagen). Total RNA obtained from the Serbian CMV isolate (HM065510) and healthy watermelon plants were used as positive and negative controls, respectively. The expected size of RT-PCR products were amplified from all naturally and mechanically infected watermelon plants but not from healthy tissues. The PCR product derived from isolate 449-12 was purified and directly sequenced using the same primer pair as in RT-PCR (JX280942) and analyzed by MEGA5 software (3). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 449-12 shared the highest nucleotide identity of 98.9% (99.1% amino acid identity) with the Spanish melon isolate (AJ829777) and Syrian tomato isolate (AB448696). To our knowledge, this is the first report of CMV on watermelon in Serbia. CMV is widely distributed within the Mediterranean basin where it has a substantial impact on many agricultural crops (2) and is often found to be prevalent during pumpkin and squash surveys in Serbia (4). The presence of CMV on watermelon could therefore represent a serious threat to this valuable crop in Serbia. References: (1) L. M. da Silveira et al. Trop. Plant Pathol. 34:123, 2009. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) A. Vucurovic et al. Eur. J. Plant Pathol. 133:935, 2012.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 150-150 ◽  
Author(s):  
I. Stanković ◽  
A. Bulajić ◽  
A. Vučurović ◽  
D. Ristić ◽  
K. Milojević ◽  
...  

In July 2011, greenhouse-grown chrysanthemum hybrid plants (Chrysanthemum × morifolium) with symptoms resembling those associated with tospoviruses were observed in the Kupusina locality (West Bačka District, Serbia). Disease incidence was estimated at 40%. Symptomatic plants with chlorotic ring spots and line patterns were sampled and tested by double antibody sandwich (DAS)-ELISA using polyclonal antisera (Bioreba AG, Reinach, Switzerland) against the two of the most devastating tospoviruses in the greenhouse floriculture industry: Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (2). Commercial positive and negative controls and extracts from healthy chrysanthemum tissue were included in each ELISA. TSWV was detected serologically in 16 of 20 chrysanthemum samples and all tested samples were negative for INSV. The virus was mechanically transmitted from ELISA-positive chrysanthemum samples to five plants each of both Petunia × hybrida and Nicotiana tabacum ‘Samsun’ using chilled 0.01 M phosphate buffer (pH 7) containing 0.1% sodium sulfite. Inoculated plants produced local necrotic spots and systemic chlorotic/necrotic concentric rings, consistent with symptoms caused by TSWV (1). The presence of TSWV in ELISA-positive chrysanthemum plants and N. tabacum‘Samsun’ was further confirmed by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primers TSWVCP-f/TSWVCP-r specific to the nucleocapsid protein (N) gene (4). A Serbian isolate of TSWV from tobacco (GenBank Accession No. GQ373173) and RNA extracted from a healthy chrysanthemum plant were used as positive and negative controls, respectively. An amplicon of the correct predicted size (738-bp) was obtained from each of the plants assayed, and that derived from chrysanthemum isolate 529-11 was purified (QIAqick PCR Purification Kit, Qiagen) and sequenced (JQ692106). Sequence analysis of the partial N gene, conducted with MEGA5 software, revealed the highest nucleotide identity of 99.6% (99% amino acid identity) with 12 TSWV isolates deposited in GenBank originating from different hosts from Italy (HQ830186-87, DQ431237-38, DQ398945), Montenegro (GU355939-40, GU339506, GU339508), France (FR693055-56), and the Czech Republic (AJ296599). The consensus maximum parsimony tree obtained on a 705-bp partial N gene sequence of TSWV isolates available in GenBank revealed that Serbian TSWV isolate 529-11 from chrysanthemum was clustered in the European subpopulation 2, while the Serbian isolates from tomato (GU369723) and tobacco (GQ373172-73 and GQ355467) were clustered in the European subpopulation 1 denoted previously (3). The distribution of TSWV in commercial chrysanthemum crops is wide (2). To our knowledge, this is the first report of TSWV infecting chrysanthemum in Serbia. Since chrysanthemum popularity and returns have been rising rapidly, the presence of TSWV may significantly reduce quality of crops in Serbia. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) Daughtrey et al. Plant Dis. 81:1220, 1997. (3) I. Stanković et al. Acta Virol. 55:337, 2011. (4) A. Vučurović et al. Eur. J. Plant Pathol. 133:935, 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 149-149 ◽  
Author(s):  
A. Vučurović ◽  
A. Bulajić ◽  
I. Stanković ◽  
D. Ristić ◽  
D. Nikolić ◽  
...  

During a survey of cucurbit viruses in the Gornji Tavankut locality (North Backa District), Serbia in June 2011, field-grown (a surface of 1.8 ha) watermelon plants (Citrullus lanatus [Thunb.] Matsum and Nakai) with mild mosaic symptoms were observed. Large numbers of Aphis gossypii were colonizing the crop. A total of 26 samples, six from plants exhibiting mosaic and 20 from asymptomatic plants, were analyzed by double-antibody sandwich-ELISA using polyclonal antisera virus (Bioreba AG, Reinach, Switzerland) against three cucurbit-infecting viruses known to infect Cucurbita pepo in Serbia: Zucchini yellow mosaic virus (ZYMV), Cucumber mosaic virus, and Watermelon mosaic virus (3). Commercial positive and negative controls were included in ELISA analysis. Only six symptomatic samples tested positive for ZYMV, but no other tested viruses were found. The virus was mechanically transmitted from a representative ELISA-positive watermelon sample (550-11) to five plants of C. pepo ‘Ezra F1’ and severe mosaic was noticed 10 days after inoculation. For further confirmation of ZYMV infection, total RNA from a naturally infected watermelon plant and symptomatic C. pepo ‘Ezra F1’ plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primer pair ZY-2 and ZY-3 (2). Total RNA obtained from a Serbian isolate of ZYMV from pumpkin (GenBank Accession No. HM072432) and healthy watermelon plants were used as positive and negative controls, respectively. The expected sizes of the RT-PCR products (1,186 bp) were amplified from naturally and mechanically infected symptomatic samples, but not from healthy tissues. The amplified product that derived from isolate 550-11 was purified (QIAquick PCR Purification Kit, Qiagen), sequenced in both directions, deposited in GenBank (Accession No. JN561294), and subjected to sequence analysis using MEGA4 software. Sequence comparisons revealed a high nucleotide identity of 99.9 to 99.8% and 100 to 99.6% amino acid identity for the CP gene with Serbian ZYMV isolates from C. pepo (Accession Nos. JF308188, HM072431, and HM072432). The nucleotide and deduced amino acid sequences of the entire CP gene (837 nt) of the Serbian ZYMV isolate from watermelon shared 99.9 to 93.7% and 100 to 96.8% identity, respectively, with innumerous isolates of ZYMV deposited in the GenBank (e.g., Accession Nos. AJ420012–17 and FJ705262). To our knowledge, this is the first report of ZYMV spreading its host range to watermelon in Serbia. ZYMV infection has been responsible for severe epidemics on cucurbits throughout the world (1). The presence of ZYMV on watermelon could therefore represent a serious threat for this valuable crop in Serbia, especially considering that it is prevalent in other cucurbit crops in the country and the vectors are widespread. References: (1) H. Lecoq et al. Virus Res. 141:190, 2009. (2) K. G. Thomson et al. J. Virol. Methods 55:83, 1995. (3) A. Vučurović et al. Pestic. Phytomed. (Belgrade) 24:85, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 574-574 ◽  
Author(s):  
Y. F. Wang ◽  
G. P. Wang ◽  
L. P. Wang ◽  
N. Hong

Taro (Colocasia esculenta L. Schott) is an important crop worldwide. In China, the growing area and productivity of taro increased greatly in recent years. During the 2010 to 2013 growing seasons (from May to July), the incidence of Cucumber mosaic virus (CMV) in taro was determined. Leaf samples from 91 taro plants, including 26 plants of cv. Hongyayu grown in Jiangxi Province in eastern China, 33 plants of cv. Eyu no.1 grown in Hubei Province in central China, and 32 plants of cv. Baiyu grown in Guangxi Province in southwest China were collected randomly and tested for the presence of CMV by reverse transcription (RT)-PCR. Some sampled plants of cv. Hongyayu and Eyu no.1 showed leaf chlorosis or chlorotic spots, and most of the plants of these three cultivars showed feather-like mosaic symptom on their leaves, which was confirmed to be associated with the infection of Dasheen mosaic virus (DsMV) in our previous studies (3). Total RNA was extracted from leaves using CTAB protocol reported by Li et al. (1). Primer set forward 5′-ATGGACAAATCTGAATCAACC-3′/reverse 5′-TAAGCTGGATGGACAACCCGT-3′ (4) was used for the amplification of a 777-bp fragment, which contains the complete capsid protein (CP) gene of 657 bp. PCR products of the expected size were identified from 11 taro samples, including two samples of Hongyayu, three Eyu no.1, and six Baiyu plants. The result did not show any specific association between the symptoms observed and CMV infection. The obtained PCR products were cloned individually into the vector pMD18-T (TaKaRa, Dalian, China). Three independent clones derived from each product were sequenced by Genscript Corp., Nanjing, China. Pairwise comparison of CP gene sequences (Accession No. of one representation CP sequence: KF564789) showed 99.7 to 99.8% nucleotide (nt) and 99.1 to 99.5% deduced amino acid (aa) sequence identity among themselves, and 92.0 to 94.3% and 76.5 to 77.7% nt identities with corresponding sequences of CMV isolates in subgroup I and subgroup II (2), respectively. The maximum likelihood phylogenetic trees of nt and aa sequences generated by Clustal X v1.8 revealed that all these CMV isolates from taro in China fell into subgroup I. To further confirm the CMV infection, leaf saps of CMV infected taro plants of cv. Eyu no.1 were mechanically inoculated onto Pinellia ternate and Cucumis sativus. Plants of P. ternate showed local chlorotic lesions on the inoculated leaves and downward curl of newly grown leaves, and C. sativus showed local chlorotic lesions on the inoculated leaves and crinkle of newly grown leaves at 10 to 15 days post inoculation. The RT-PCR detection confirmed the CMV infection in those inoculated plants, and that the plants of P. ternate were also positive to DsMV, further complementing the results obtained above. To our knowledge, this is the first report of CMV occurrence in taro plants grown in China. Our results indicated that taro plants were widely infected by CMV isolates in subgroup I. This study provides important information for further evaluating the viral sanitary status of taro germplasm and improving the certification program of taro propagation materials in China. References: (1) R. Li et al. J. Virol. Methods 154:48, 2008. (2) P. Palukaitis et al. Adv. Virus. Res. 62:241, 2003. (3) S. M. Shi et al. Acta Hortic. Sin. 39:509, 2012. (4) P. D. Xu et al. Chinese J. Virol. 15:164, 1999.


Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1585-1585 ◽  
Author(s):  
S. Davino ◽  
F. Di Serio ◽  
G. Polizzi ◽  
M. Tessitori

Solanum jasminoides Paxton (potato vine or jasmine nightshade) is a vegetatively propagated ornamental species within the Solanaceae family. Recently, symptomless plants of this species were reported as natural hosts of the quarantine pest, Potato spindle tuber viroid (PSTVd) in Italy (1). In January 2008, approximately 1,000 potted, 2-year-old plants of S. jasminoides growing in an ornamental nursery in Sicily showed virus-like mosaic and malformation of leaves. Symptoms were observed on approximately 60% of the plants. Leaf tissue, collected from 30 symptomatic and 10 symptomless plants, was analyzed by double-antibody sandwich-ELISA with polyclonal antisera specific to Cucumber mosaic virus (CMV), Tomato spotted wilt virus, and Impatiens necrotic spot virus (Loewe Biochemica, Sauerlach, Germany). The same samples were also analyzed by tissue-printing hybridization with a PSTVd-specific digoxigenin-labelled riboprobe. All the symptomatic samples tested positive only with antisera against CMV, but negative in all other tests. The symptomless samples were negative in all the performed tests. To confirm the association of CMV with the diseased plants, total RNA was extracted from the same samples (RNeasy Plant Mini Kit; Qiagen, Hilden, Germany) and analyzed by reverse transcription (RT)-PCR using CMV-specific primers MP+5′-CATGGCTTTCCAAGGTACCAG-3′ and MP-5′-CTAAAGACCGTTAACCACCTGC-3′ that amplify a 844-bp fragment from the MP gene (2). The expected fragment was amplified only from samples of symptomatic tissue. CMV was also detected in mother plants grown in the same nursery and showing same mosaic symptoms. Definitive identification of the pathogen was obtained by cloning and sequencing the RT-PCR product. The obtained sequence (GenBank Accession No. EU828783) had 99 and 98% similarity with the subgroup I-A isolates CMV-LUN (GenBank Accession No. EU432183) and CMV-Fny (GenBank Accession No. DI0538), respectively. To our knowledge, this is the first report of CMV infecting S. jasminoides and it adds a new host to the more than 1,000 species (85 plant families) infected by this virus. The high incidence of the disease in the nursery could be due to propagation of cuttings from an infected source. References: (1) F. Di Serio. J. Plant Pathol. 89:297, 2007. (2) H. X. Lin et al. J. Virol. 78:6666, 2004.


Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 78-78 ◽  
Author(s):  
K. E. Efthimiou ◽  
A. P. Gatsios ◽  
K. C. Aretakis ◽  
L. C. Papayiannis ◽  
N. I. Katis

Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae) is a mechanically transmitted virus that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world during the past 10 years (1). In spring of 2010, mosaic symptoms were observed on leaves of cherry tomato (Lycopersicon esculentum var. cerasiforme) greenhouse crops (hybrids Shiren, Tomito, and Rubino top) in the areas of Drymos and Vonitsa, located at Aitoloakarnania Prefecture, in Greece. A total of 63 tomato samples (55 from symptomatic and 8 from asymptomatic plants) were collected from 11 greenhouses where disease incidence ranged from 10 to 20%. All samples were tested by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies from BIOREBA, AG (Reinach, Switzerland) for the presence of PepMV, Cucumber mosaic virus (CMV), and Tomato mosaic virus (ToMV). Leaf tissue from PepMV-, CMV-, and ToMV-infected samples and virus-free tomato plants were included in all tests as positive and negative controls, respectively. Results showed that 53 symptomatic samples collected from all greenhouses were infected with PepMV and two were co-infected with PepMV and CMV. Total RNA was extracted from all infected plants with a commercially available kit (Qiagen, Hilden, Germany) and amplified by conventional and real-time reverse transcription (RT)-PCR, using previously reported protocols (2). Positive and negative controls were also included in each assay. The 200-bp amplified PCR fragments of Triple Gene Block 3 (TGB3) obtained from five infected samples were purified and both strands were sequenced. Sequencing data were analyzed, deposited in the GenBank, and compared with other reported sequences. In addition, leaf tissue from five samples infected with only PepMV was used for mechanical inoculation of four plants of Nicotiana glutinosa, N. benthamiana, and tomato (L. esculentum FA 179 hybrid) plants. As negative controls, two plants from each species were used. Sequencing analysis showed that all five PepMV sequences were identical (GenBank Accession Nos. FR686904 to FR686908) and possessed 100% identity PepMVstrain CH2 (DQ000985). Inoculation results showed that the virus was successfully transmitted to N. benthamiana and tomato plants which developed mosaic symptoms, and tested positive by DAS-ELISA and RT-PCR. N. glutinosa plants did not develop any symptoms and were found to be free of PepMV when tested by DAS-ELISA and RT-PCR. To our knowledge, this is the first report of PepMV in Greece. Further studies on the disease prevalence and incidence and its economic impact on tomato production are required. PepMV is currently under quarantine status in the EU and therefore new protective measures should be recommended to prevent the spread of PepMV to other regions of Greece. References: (1) I. M. Hanssen and B. P. H. J. Thomma. Mol. Plant Pathol. 11:179, 2010. (2) K. S. Ling et al. J. Virol. Methods 144:65, 2007.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 573-573 ◽  
Author(s):  
J. Y. Yoon ◽  
G. S. Choi ◽  
I. S. Cho ◽  
S. K. Choi

African violet (Saintpaulia ionantha) is an ornamental species of the family Gesneriaceae and is characterized by fleshy leaves and colorful flowers. This popular, exotic ornamental, originally from Kenya and Tanzania, is vegetatively produced from cutting and tissue culture (1). In May 2013, virus-like foliar symptoms, including a mosaic with dark green islands and chlorosis surrounding the veins, were observed on an African violet plant in a greenhouse located in Icheon, Korea. Cucumber mosaic virus (CMV) was identified in the symptomatic plant by serological testing for the presence of CMV coat protein (CP) with a commercial immunostrip kit (Agdia, Elkhart, IN). The presence of CMV was confirmed by serological detection with a commercially available double-antibody sandwich (DAS)-ELISA kit (Agdia). Sap from the serologically positive sample was mechanically inoculated to test plants using 10 mM phosphate buffer (pH 7.0). The virus (named CMV-AV1) caused necrotic local lesions on Chenopodium amaranticolor at 5 days post-inoculation (dpi), while mild to severe mosaic was observed in Nicotiana glutinosa, N. tabacum ‘Samsun NN,’ Cucurbita pepo ‘Super-Top,’ Physalis angulate, and Solanum lycopersicum ‘Unicorn’ 10 to 14 dpi. Examination of the inoculated plant leaves by DAS-ELISA and electron microscopy (leaf dips) showed positive reactions to CMV and the presence of spherical virions ∼28 nm in diameter, respectively. To verify whether CMV-AV1 is the cause of disease symptoms observed in African violet, virus-free African violet (10 plants) was mechanically inoculated by sap from local lesions on C. amaranticolor inoculated with CMV-AV1. At 8 weeks after inoculation, all plants produced systemic mosaic and chlorosis surrounding veins, resulting in strong DAS-ELISA reactions for CMV, whereas mock-inoculated African violet plants remained symptomless and virus-free. The presence of CMV-AV1 in all naturally infected and mechanically inoculated plants was further verified by reverse transcription (RT)-PCR. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer's instructions. RT-PCR was carried out with the One-Step RT-PCR Kit (Invitrogen, Carlsbad, CA) using a pair of primers, CPTALL3 and CPTALL5 (2), amplifying the entire CP gene and part of an intergenic region and 3′-noncoding region of CMV RNA3. RT-PCR products (960 bp) were obtained from all naturally infected and mechanically inoculated plants as well as from positive control (viral RNAs from virions), but not from healthy tissues. The amplified RT-PCR products were purified with QIAquick PCR Purification Kit (Qiagen) and sequenced using BigDye Termination kit (Applied Biosystems, Foster City, CA). Multiple alignment of the CMV-AV1 CP sequence (Accession No. AB842275) with CP sequences of other CMV isolates using MEGA5 software revealed that 91.8 to 99.0% and 71.0 to 73.0% identities to those of CMV subgroup I and subgroup II, respectively. These results provide additional confirmation of CMV-AV1 infection. CMV may pose a major threat for production of African violet since the farming of African violet plants is performed using the vegetative propagation of the African violet leaves in Korea. In particular, mosaic and chlorosis symptoms in African violet cause damage to ornamental quality of African violet. To our knowledge, this is the first report of CMV infection of African violet in the world. References: (1) S. T. Baatvik. Fragm. Flor. Geobot. Suppl. 2:97, 1993. (2) S. K. Choi et al. J. Virol. Methods 83:67, 1999.


Sign in / Sign up

Export Citation Format

Share Document