scholarly journals A Root Rot of Chickpea Caused by Isolates of the Fusarium solani Species Complex in Brazil

Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2171-2171 ◽  
Author(s):  
C. S. Cabral ◽  
M. P. Melo ◽  
M. E. N. Fonseca ◽  
L. S. Boiteux ◽  
A. Reis
Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1784 ◽  
Author(s):  
M. P. Melo ◽  
J. E. A. Beserra ◽  
K. S. Matos ◽  
C. S. Lima ◽  
O. L. Pereira

2011 ◽  
Vol 77 (2) ◽  
pp. 132-135 ◽  
Author(s):  
Keisuke Tomioka ◽  
Yuuri Hirooka ◽  
Akane Takezaki ◽  
Takayuki Aoki ◽  
Toyozo Sato

2016 ◽  
Vol 120 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Sarah S. Costa ◽  
Kedma S. Matos ◽  
Dauri J. Tessmann ◽  
Claudine D.S. Seixas ◽  
Ludwig H. Pfenning

Plant Disease ◽  
2021 ◽  
Author(s):  
Di Wu ◽  
Danhua Zhang ◽  
Caixia Wang ◽  
Yue Wei ◽  
Michael Paul Timko ◽  
...  

Loquat (Eriobotrya japonica), a native fruit tree to China, is a popular edible fruit with medicinal properties (Badenes et al. 2013). A 2016-2019 field survey of ~13,000 loquat trees in two orchards in Chongqing and Fujian provinces showed about 5 to 10% root rot disease incidence. The disease symptoms included leaf yellowing, wilting, rotting of main root, and cracking of lateral roots, eventually leading to defoliation and death. To determine the causative agent, diseased roots from six trees were collected, washed in tap water, cut into 2-3 mm pieces, and disinfected for 3 min in 75% (v/v) EtOH. After rinsing in sterilized water, the root pieces were soaked in 10% NaClO (w/v) for 5-10 min, rinsed thrice in sterile water, and plated on potato dextrose agar (PDA). After 7 days of incubation at 25°C, individual spores were collected from the fungal colonies and replated. Single spore cultures growing on PDA gave rise to woolly-cottony, cream-white colored aerial mycelium and a yellowish pigmented mycelium. The average colony growth rate was 8.6 mm day-1 (n=3). Microscopic observation of the mycelium revealed septate and hyaline hyphae and long cylindrical monophialides. Macroconidia were moderately curved, stout, 3-4 septate, measuring 20.79-48.70 μm × 4.16-10.14 μm (n=50). Microconidia produced from long phialides were kidney-shaped, 0-2 septate, and 5.72-17.28 μm × 2.29-6.51 μm (n=50) in size. The mycelial characteristics and reproductive structures of the isolates fit the morphological description of Fusarium sp. (Summerell et al. 2003). To confirm this identification, translation elongation factor (EF-1α) and RNA polymerase I beta subunit (RPB1) and RNA polymerase II beta subunit (RPB2) regions of the genome were PCR amplified from 3 separate isolates (R2, R4 and R5) using EF1/ EF2, RPB1-Fa/G2R, RPB2-5f2/7cR & RPB2-7cF/11aR primer pairs (O’Donnell et al. 2010) and sequenced. BLASTn comparison of the EF-1α (MT976167), RPB1 (MT967271) and RPB2 (MW233052) regions from isolate R4 showed 99% identity with the EF-1α (GU170620, 675/676 bp), RPB1 (KC808270, 1543/1545 bp) and RPB2 (MK4419902, 1637/1638 bp) sequences of Fusarium solani species complex (FSSC) in GenBank database. The same species level identification was also found using FUSARIUM-ID and FUSARIUM-MLDT databases. Two-year-old seedlings (n=3) of two different cultivars, ‘Hunanzaoshu’ and ‘Huabai No. 1’, growing in pots indoors at 25-27 °C were inoculated by drenching the soil with a conidial suspension of isolate R4 (40 mL, 106 conidia mL-1 obtained from 6-10 day old cultures). Control plants (n=3) were inoculated with sterilized water. At 20 days after inoculation (DAI) the leaves of inoculated plants became chlorotic and wilted, defoliated over time, and by 53 DAI 91.67% of plants died. The taproot and lateral roots of inoculated plants appeared brown to black in color and most lateral roots died and decomposed at 53 DAI, whereas the control plant roots remained healthy. All control plants remained symptomless. Based on morphological and molecular characters (TEF-1, RPB1 and RPB2), the re-isolated pathogen from diseased plants was identical to the R4 isolate used for inoculation and the disease assays were repeated thrice. FSSC was recently reported to cause fruit rot disease on loquat in Pakistan (Abbas et al. 2017). Identifying Fusarium solani species complex as a disease agent in Chinese loquat will assist in future development of improved germplasm for this important worldwide tree crop.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2470 ◽  
Author(s):  
Y. H. Zhou ◽  
Y. L. Liu ◽  
X. G. Yin ◽  
J. N. Lu ◽  
J. R. Tang

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 327-333 ◽  
Author(s):  
Periasamy Chitrampalam ◽  
Nivi Abraham ◽  
Berlin D. Nelson

Fusarium solani species complex (FSSC) 11 is the primary phylogenetic species of FSSC causing root rot in soybean in the north-central United States. A polymerase chain reaction (PCR)-based assay was developed to identify and differentiate FSSC 11 from the less aggressive FSSC 5 and other Fusarium and Pythium spp. associated with soybean roots. The primer set FSSC11-F and FSSC11-R designed from the RNA polymerase second largest subunit gene yielded the expected amplicon of about 900 bp with DNA from all 22 FSSC 11 isolates tested in PCR. However, it did not produce an amplicon with DNA from 29 isolates of FSSC 5, seven other Fusarium spp., three Pythium spp., and soybean tested in PCR. Furthermore, the primer set successfully detected FSSC 11 from a DNA mixture containing the DNA of FSSC 11, FSSC 5, other Fusarium spp., and soybean. The primer set also detected FSSC 11 from both soil and soybean roots. Additionally, the prevalence of FSSC 11 in soybean roots was determined in five fields in North Dakota by both a culture-independent PCR approach with FSSC11-F and FSSC11-R and a culture-dependent approach. Results from both the culture-dependent and culture-independent approaches with FSSC11-F and FSSC11-R were consistent and revealed the presence of the FSSC 11 in three of five fields sampled.


2006 ◽  
Vol 142 (5) ◽  
pp. 897
Author(s):  
N. Zhang ◽  
K. O’Donnell ◽  
D.A. Sutton ◽  
F.A. Naim ◽  
R.C. Summerbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document