scholarly journals First Report of Ewingella americana Causing Bacterial Shot Hole on Anoectochilus roxburghii in China

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1247 ◽  
Author(s):  
M. Wei ◽  
Z. B. Zhao ◽  
H. Y. Liu ◽  
C. H. Fu ◽  
L. J. Yu
2006 ◽  
Vol 72 (5) ◽  
pp. 3558-3565 ◽  
Author(s):  
Piklu Roy Chowdhury ◽  
Jack A. Heinemann

ABSTRACT Cavity disease in white button mushrooms is caused by Burkholderia gladioli pv. agaricicola. We describe the isolation and characterization of six mutants of the strain BG164R that no longer cause this disease on mushrooms. The mutations were mapped to genes of the general secretory pathway (GSP). This is the first report of the association of the type II secretion pathway with a disease in mushrooms. Phenotypes of the six avirulent mutants were the following: an inability to degrade mushroom tissue, a highly reduced capacity to secrete chitinase and protease, and a reduced number of flagella. Using these mutants, we also made the novel observation that the factors causing mushroom tissue degradation, thereby leading to the expression of cavity disease, can be separated from mycelium inhibition because avirulent mutants continued to inhibit the growth of actively growing mushroom mycelia. The GSP locus of B. gladioli was subsequently cloned and mapped and compared to the same locus in closely related species, establishing that the genetic organization of the gsp operon of B. gladioli pv. agaricicola is consistent with that of other species of the genus. We also identify the most common indigenous bacterial population present in the mushroom fruit bodies from a New Zealand farm, one of which, Ewingella americana, was found to be an apparent antagonist of B. gladioli pv. agaricicola. While other investigators have reported enhanced disease symptoms due to interactions between endogenous and disease-causing bacteria in other mushroom diseases, to the best of our knowledge this is the first report of an antagonistic effect.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chuan-Qing Zhang ◽  
X. Y. Chen ◽  
Ya-hui Liu ◽  
Dejiang Dai

Anoectochilus roxburghii is an important Chinese herbal medicine plant belonging to Orchidaceae and known as Jinxianlian. This orchid is cultivated and mostly adopted to treat diabetes and hepatitis. About 2 billion artificially cultivated seedlings of Jinxianlian are required each year and approximately $600 million in fresh A. roxburghii seedlings is produced in China. From 2011, sporadic occurrence of stem rot on Jinxianlian have been observed in greenhouses in Jinhua City (N29°05′, E119°38′), Zhejiang Province. In 2018, nearly 30% of seedlings of Jinxianlian grown in greenhouse conditions were affected by stem rot in Jinhua City. Symptoms initially occurred in the stem at the soil line causing dark discoloration lesions, rotted tissues, wilting, and eventually leading to the death of the plants. A total of 23 diseased seedlings collected from seven different greenhouses were surface sterilized with 1.5% sodium hypochlorite for 3 min, then rinsed in water. Pieces of tissues disinfected from each sample were plated on 2% potato dextrose agar (PDA), and incubated at 25°C in the dark for 5 days (Kirk et al. 2008). A total of 19 isolates were recovered. They developed colonies with purple mycelia and beige or orange colors after 7 days of incubation under 25°C on PDA and carnation leaf agar (CLA) media (Kirk et al. 2008; Zhang et al. 2016). Colonies on PDA had an average radial growth rate of 3.1 to 4.0 mm /d at 25°C. Colony surface was pale vinaceous, floccose with abundant aerial mycelium. On CLA, aerial mycelium was sparse with abundant bright orange sporodochia forming on the carnation leaves. Microconidia were hyaline and oval-ellipsoid to cylindrical (3.7 to 9.3 × 1.3 to 2.9 μm) (n=19). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (27.4 to 35.6 × 3.2 to 4.2 μm) (n=19). These morphological features were consistent with Fusarium oxysporum (Sun et al. 2008; Lombard et al., 2019). To confirm the identification based on these morphological features, the internal transcribed spacer region (ITS) and translation elongation factor1 (TEF) were amplified from the DNA of 3 out of 19 isolates chosen at random respectively using the set primer ITS1/ITS4 and EF1/ EF2 (Sun, S., et al. 2018; Lombard et al., 2019). BLAST analysis revealed that the ITS sequences (OK147619, OK147620, OK147621) had 99% identity to that of F. oxysporum isolate JJF2 (GenBank MN626452) and TEF sequence (OK155999, OK156000, OK156001) had 100% identity to that of F. oxysporum isolate gss100 (GenBank MH341210). A multilocus phylogenetic analysis by Bayesian inference (BI) and maximum likelihood (ML) trees based on ITS and TEF indicated that the pathogen grouped consistently with F. oxysporum. Three out of 19 isolates chosen at random were selected to evaluate pathogenicity. Uninfected healthy A. roxburghii seedlings about 40 day-old planted in sterilized substrates were sprayed with distilled water containing 2 x 106 conidia per ml suspensions as inoculums, and plants sprayed with distilled water alone served as controls. Plants were then incubated at 25°C and 85% relative humidity. Ten plants were inoculated for each isolate. After 10 days, all plants inoculated developed stem rot symptoms, while control plants remained healthy. Cultures of Fusarium spp. were re-isolated only from inoculated plants with the frequency of 100% and re-identified by morphological characteristics as F. oxysporum, fulfilling Koch’s postulates. To the best of our knowledge, this is the first report of F. oxysporum causing stem rot on A. roxburghii seedlings. As F. oxysporum is a devastating pathogenic fungus with a broad host range, measures should be taken in advance to manage stem rot of A. roxburghii.


1999 ◽  
Vol 37 (11) ◽  
pp. 3733-3734 ◽  
Author(s):  
Chryssa Kati ◽  
Evangelia Bibashi ◽  
Elisabeth Kokolina ◽  
Danai Sofianou

Reports of serious infections caused by Ewingella americana have been rare. A case of E. americanaperitonitis in a patient receiving continuous ambulatory peritoneal dialysis is described. This is the first report of E. americana causing such an infection.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1861
Author(s):  
X. Y. Chen ◽  
C. Q. Zhang ◽  
X. J. Zhou ◽  
L. Y. Zhu ◽  
X. C. He

1988 ◽  
Vol 62 (01) ◽  
pp. 141-143 ◽  
Author(s):  
Gerard M. Thomas ◽  
George O. Poinar

A sporulating Aspergillus is described from a piece of Eocene amber originating from the Dominican Republic. The Aspergillus most closely resembles a form of the white spored phase of Aspergillus janus Raper and Thom. This is the first report of a fossil species of Aspergillus.


2005 ◽  
Vol 173 (4S) ◽  
pp. 377-378
Author(s):  
Yasunori Hiraoka ◽  
Kazuhiko Yamada ◽  
Yuji Shimizu ◽  
Hiroyuki Abe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document