First report of bacterial brown rot disease on shiitake mushroom (Lentinula edodes) caused by Ewingella americana in Korea

Author(s):  
WonJun Na ◽  
Huan Luo ◽  
Jun Myoung Yu
Plant Disease ◽  
2021 ◽  
Author(s):  
Shuwu Zhang ◽  
Dong Xiang ◽  
Tong Li ◽  
Bingliang Xu

Brown rot caused by Monilinia spp. is one of the most important diseases of stone fruits. To date, three species of Monilinia have been found to occur on Prunus species worldwide: Monilinia fructicola (G. Winter) Honey, Monilinia fructigena (Aderhold & Ruhland) Honey, and Monilinia laxa (Aderhold & Ruhland) Honey (Zhu et al. 2005; Hu et al. 2011a). While M. fructicola is widespread in the Americas, and parts of Europe and Asia (CABI, 2010), M. laxa and M. fructigena are the primary species causing brown rot of peach in Europe (Bryde et al. 1977). In China, a new species Monilia yunnanensis was identified in 2011 (Hu et al. 2011b; Zhao et al. 2013; Yin et al. 2015; Yin et al. 2017). However, the species causing brown rot of nectarine (Prunus persica var. nectarina) in Tibet have not been undertaken. In the summer of 2017-2018, brown rot disease of nectarine was observed in Nyingchi, Tibet, and approximately 30% of nectarines were affected annually. Therefore, the brown rot disease of nectarine is one of the main factors that restrict the yield and quality of nectarine fruit production, and causes severe economic losses in Tibet. Thirty-six nectarine fruit with typical brown rot symptoms were collected from Tibet during the summer of 2017-2018. In order to isolate the causal agent, small pieces of pericarp were disinfected with 75% ethanol for 1 min, and then for 1 min in 1% NaOCl, rinsed in sterile distilled water for three times, dried on sterile paper and placed on potato dextrose agar (PDA). Thirty-six single-spore isolates were obtained and all morphologically similar, and three representative isolates 2-1, 2-16 and 2-31 which were from different period and years in 2017-2018 were characterized phylogenetically and morphologically to identify them to species level. Pathogenicity of each representative isolate was confirmed by inoculating five surface-disinfected mature nectarines with mycelial plugs in the wound of the fruit. Nectarine fruit inoculated with sterile PDA plugs served as the negative control. The inoculated nectarines developed brown lesions after 6 days incubation at 22°C, and the pathogen was successfully re-isolated. There were no symptoms on the control nectarine fruit. The isolates 2-1, 2-16 and 2-31 produced gray-green colonies with even margins and concentric rings of sporogenous mycelium after 3 days incubation, and abundant black-colored stromata on the media after 16 days of incubation at 22°C, resembling those described for M. yunnanensis (Hu et al. 2011b). Conidia were one-celled, hyaline, ellipsoid to lemon shape (9.24 to 15.58 μm), and borne in branched monilioid chains. The average daily growth of mycelium on PDA at 22°C was 11.56 mm. Therefore, the isolates 2-1, 2-16 and 2-31 were preliminarily identified as M. yunnanensis based on the morphological investigations (Hu et al. 2011b). Morphological identification was confirmed by phylogenetic analysis based on sequences of glyceraldehyde-3-phosphate dehydrogenase (G3PDH) and β-tubulin (TUB2) genes of 2-1, 2-16 and 2-31 which were amplified using primers Mon-G3pdhF/Mon-G3pdhR and Mon-TubF1/Mon-TubR1 (Hu et al. 2011b). In both G3PDH and TUB2 phylogenetic trees, the isolates 2-1, 2-16 and 2-31 formed monophyletic clades within a derived clade with the M. yunnanensis isolates. Additionally, the three isolates were more closely related to M. yunnanensis (HQ908782.1 and HQ908783.1) than to other Monilinia species. Based on morphological and molecular identification, the isolates 2-1, 2-16 and 2-31 were identified as M. yunnanensis. Previously, M. yunnanensis has been reported as a new species causing brown rot of peach in China (Hu et al, 2011b). To our knowledge, this is the first report of M. yunnanensis causing nectarine fruit brown rot in Tibet. These findings suggest that M. yunnanensis is spreading on its principal host plants and causing substantial economic losses in the Tibet fruit production.


Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 1013-1013 ◽  
Author(s):  
H. W. Kwon ◽  
Y. H. Yun ◽  
S. H. Kim ◽  
H. G. Ko

Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1399-1399 ◽  
Author(s):  
S.-C. Yun ◽  
J.-W. Kim

Soybean (Glycine max Merr.) sprouts have been a traditional Korean food for at least 1,000 years. During the summers of 2000 and 2001, severe hypocotyl and root rot occurred on fully grown soybean sprouts, especially in commercial recirculating mass production systems. Brown rot on water-soaked hypocotyls and roots of soybean sprouts caused a 10 to 20% loss in production yield. To investigate the cause, 180 sections of tissue were surface sterilized for 30 s in 75% ethanol and plated on potato dextrose agar (PDA). A fungus with white, aerial mycelia and cultural characteristics of Pythium sp. was isolated consistently. The fungal isolates were identified as Pythium deliense Meurs based on various mycological characteristics (2) on corn meal agar (CMA) and sucrose-asparagine bentgrass leaf culture medium (1). P. deliense oogonia were spherical, smooth, 19 to 23 μm in diameter, and their stalks bent toward the antheridia. The antheridia were the shape of a straw hat, curved club-shaped, terminal or intercalary, monoclinous, occasionally diclinous, 12 to 15 × 8 to 11 μm, and 1 per oogonium (2). In pathogenicity tests, soybean sprouts and the fungus were cultured simultaneously in containers (30 × 30 × 50 cm [W × L × H]) with a daily 3-h showering period at 25°C. There were 8,000 to 10,000 seeds per container inoculated with four plugs of agar inoculum (2 × 2 cm). Inoculum was prepared from 5-day-old fungal cultures grown on PDA. After 6 days, the inoculated soybean sprouts showed the same symptoms as described above, whereas the noninoculated sprouts remained healthy. The fungal pathogen was reisolated from all the inoculated sprouts. P. deliense has never been reported as a pathogen of soybean sprouts. To our knowledge, this is the first report of hypocotyl and root rot disease caused by Pythium deliense on soybean sprout in Korea. References: (1) J.-W. Kim and E.-W. Park. Kor. J. Mycology 25:276, 1997. (2) A. J. Van der Plaatis-Niterink. Monograph of the genus Pythium. Vol. 21, Studies in Mycology. Centraalbureau voor Schimmelcultures, Inst. R. Neth. Acad. Sci. Lett. The Netherlands, 1981.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


Sign in / Sign up

Export Citation Format

Share Document