white button mushrooms
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Stacey Duvenage ◽  
Werner Rossouw ◽  
Germán Villamizar-Rodríguez ◽  
Erika M. du Plessis ◽  
Lise Korsten

The presence of Staphylococcus spp. has increasingly been reported in food products and poses a public health threat. The aim of this study was to determine the diversity of Staphylococcus spp. and the antibiotic resistance profiles of isolates obtained from freshly harvested and packed ready-to-eat mushrooms (n=432) and handlers’ hands (n=150). A total of 56 Staphylococcus isolates [46.4% (n=26) from hands and 53.6% (n=30) from mushrooms] were recovered belonging to 10 species. Staphylococcus succinus isolates (n=21) were the most prevalent, of which 52.4% came from mushrooms and 47.6% from hands. This was followed by S. equorum isolates [n=12; 91.7% (n=11) from mushrooms and 8.3% (n=1) from hands] and S. saprophyticus [n=9; 66.7% (n=6) from mushrooms and 33.3% (n=3) from hands]. Six isolates that were characterised as multidrug resistant were isolated from hands of handlers. Most (83.9%; n=47) of the 56 isolates were resistant to penicillin [53.2% (n=25) from mushrooms and 46.8% (n=22) from hands] and 14.3% (n=8) were resistant to cephalosporin classes [25% (n=2) from mushrooms and 75% (n=6) from hands], both of which are used to treat staphylococcal infections. Antibiotic resistance genes blaZ [25.0% (n=14) of all isolates of which 71.4% (n=10) were from hands and 28.57% (n=4) from mushrooms], tetL and tetK [both 1.8% (n=1) from hands], mecA [5.4% (n=3) from hands] and ermA [1.8% (n=1) from mushrooms] were detected from the 56 isolates. Only two (25.0%) of the eight methicillin-resistant staphylococci harboured the mecA gene, while only 11 (23%) of the 47 penicillin-resistant isolates harboured the blaZ gene [36.4% (n=4) from mushrooms and 63.6% (n=7) from hands]. Our results demonstrate that food handlers and harvested and packed ready-to-eat mushrooms could be a source of diverse Staphylococcus spp. that exhibit antimicrobial resistance. Clinically relevant S. aureus was only detected on one handler’s hand; however, the isolate was not multidrug resistant. The presence of diverse Staphylococcus spp. on mushrooms and the hands of handlers is a potential public health concern due to their potential to cause opportunistic infections.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 779
Author(s):  
Gloria I. Solano-Aguilar ◽  
Sukla Lakshman ◽  
Saebyeol Jang ◽  
Richi Gupta ◽  
Aleksey Molokin ◽  
...  

A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition.


Author(s):  
Sviatlana Pankavec ◽  
Jerzy Falandysz ◽  
Izabela Komorowicz ◽  
Anetta Hanć ◽  
Danuta Barałkiewicz ◽  
...  

AbstractHigh doses of lithium salts are used for the treatment or prevention of episodes of mania in bipolar disorder, but the medication is rapidly excreted and also shows side effects. Li may also be beneficial in people with mood disorders. Nutritionally, popular foods such as wild and cultivated mushrooms have low Li contents. This study evaluated the Li enrichment of white Agaricus bisporus mushrooms using Li2CO3 solutions to fortify the commercial growing substrate at various concentrations from 1.0 to 500 mg kg−1 dry weight (dw). Fortification of up to 100 mg kg−1 dw resulted in a significant (p < 0.01) dose-dependent increase in the accumulation of Li in mushroom, but the highest fortification level was found to be detrimental to fruitification. The median values of Li in fortified mushrooms corresponded to the fortification levels, increasing from 0.49 to 17 mg kg−1 dw relative to the background concentration of 0.056 mg kg−1 dw (control substrate contained 0.10 mg kg−1 dw). The potential for Li uptake in fruiting bodies was found to decrease at higher levels of fortification, with saturation occurring at 100 mg kg−1. Resulting lithiated mushrooms were up to 300-fold richer in Li content than specimens grown on control substrate. The fortification showed some effects on the uptake of other trace minerals, but concentrations of co-accumulated Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Pb, Rb, Sr, Tl, U, V and Zn were similar or lower than values reported in the literature for commercial A. bisporus. These lithiated mushrooms could be considered as a pro-medicinal alternative to treatments that use Li salts. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Amina Almushhin ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
...  

AbstractWhite button mushrooms are greatly high perishable and can deteriorate within a few days after harvesting due to physicomechanical damage, respiration, microbial growth of the delicate epidermal structure. For that reason, the present research work was applied to evaluate the effect of chitosan combination with nano-coating treatments on physicochemical parameters and microbial populations on button mushrooms at chilling storage. Nano coating with the addition of nisin 1% (CHSSN/M) established the minimum value for weight loss 12.18%, maintained firmness 11.55 N, and color index profile. Moreover, O2% rate of (CHSSN/M) mushrooms was the lowest at 1.78%; while the highest rate was reported for CO2 24.88% compared to the untreated samples (Control/M) on day 12. Both pH and total soluble solid concentrations increased during storage. Results reported that the (CHSS/M) mushroom significantly (P < 0.05) reduced polyphenol oxidase activity (24.31 U mg−1 Protein) compared with (Control/M) mushrooms that increased faster than the treated samples. (CHSSN/M) treatment was the most efficient in the reduction of yeast and mold, aerobic plate microorganisms (5.27–5.10 log CFU/g), respectively. The results established that nano-coating film might delay the aging degree and accompany by marked prolongation of postharvest mushroom freshness.


LWT ◽  
2021 ◽  
Vol 137 ◽  
pp. 110401
Author(s):  
Sarina Salemi ◽  
Ahmad Saedisomeolia ◽  
Fateme Azimi ◽  
Sareh Zolfigol ◽  
Ezeddin Mohajerani ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Sami Rokayya ◽  
Ebtihal Khojah ◽  
Abeer Elhakem ◽  
Nada Benajiba ◽  
Murthy Chavali ◽  
...  

Nutrient-rich edible white button mushrooms were coated with Chitosan (1%), Chitosan/nano-silica, and Chitosan/nano-titanium and then stored at 4 °C toinvestigate the physical, mechanical properties, chemical changes, and microbial load contamination at an interval of 3 days up to a 12 day storage period. It was noticed that Chitosan/nano-titanium and Chitosan/nano-silica preserved the weight loss percentages as 11.80% and 12.69%, respectively. Treatment with Chitosan/nano-silica coating was found to havepositive impacts on the overall color parameters. Both of the nano-coating films enhanced headspace gas compositions and firmness. Chitosan/nano-silica samples recorded the least electrolyte leakage value (24.44%), as low oxygen gas concentration can reduce the respiration rate, weight loss, and cap opening. Chitosan/nano-titanium treatment showed the lowest cap opening value (19.58%), PPO activity (16.98 mg−1 protein), and microbial load contamination (6.12 log CFU/g) at the end of the whole storage period, suggesting that nano-films are a promising preservation method forprolonging the white button mushroom’s shelf-life.


2021 ◽  
Vol 37 (4) ◽  
pp. 623-633
Author(s):  
Jiangtao Ji ◽  
Jingwei Sun ◽  
Xin Jin ◽  
Hao Ma ◽  
Xuefeng Zhu

Highlights A new background segmentation algorithm for depth image was developed. Cap diameter of white button mushroom was measured automatically. The average of diameter measurement error was 4.94%. This work can provide online decision support for selectively harvesting of Agaricus bisporus . Abstract. With the increase in the production and yield of white button mushrooms (Agaricus bisporus), efficient harvesting has become a challenge. Automatic selective harvesting has gradually become a solution. The diameter of the mushroom cap is an essential indicator of the harvesting standard. To provide guidance for selective harvesting, this article presents a method for target detection and measuring the diameter of mushroom caps by using depth image processing. According to the three-dimensional structure characteristics of the mushroom, a novel method is proposed to segment it from the compost it grows on. In this method, compost is regarded as the floor of the sea and mushrooms as standing islands. With the rise of sea level, the compost is gradually submerged, and the target of Agaricus bisporus is stable. These features were used to realize the background segmentation. After background segmentation, the pixel coordinates of the contour points of the mushroom caps are transformed into world coordinates, and the cap diameter is measured by Hough transform. In total, 380 mushrooms depicted in 25 depth images were used to test the developed algorithms. The results showed that 92.37% of the mushrooms were correctly detected. The missed detection rate was less than 8%, and the false detection rate was 1.96%. The average diameter measurement error was 4.94%, and the average process time to measure a single mushroom was approximately 0.50 s. The method proposed in this article can provide online decision support for automatic selective harvesting of Agaricus bisporus, which can improve the quality and efficiency of its production. Keywords: Background segmentation, Computer vision, Diameter measurement, Edible fungus, Hough transform.


Sign in / Sign up

Export Citation Format

Share Document