scholarly journals Occurrence of the T36 Genotype of Citrus tristeza virus in Citrus Orchards in Sicily, Italy

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1253-1253 ◽  
Author(s):  
G. Scuderi ◽  
M. Russo ◽  
S. Davino ◽  
R. Ferraro ◽  
A. Catara ◽  
...  
Author(s):  
Asma Najar ◽  
Imen Hamdi ◽  
Souad Mahmoud ◽  
Lassaad Medhioub ◽  
Imed Jaouadi ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1925-1931
Author(s):  
Raymond K. Yokomi ◽  
Mark S. Sisterson ◽  
Subhas Hajeri

In California, citrus tristeza virus (CTV) is regulated by a State Interior Quarantine. In CTV abatement districts in central California, trees with CTV that react to MCA13 (MCA13-positive [MCA13+]), a strain-discriminating monoclonal antibody, are rogued to prevent virus spread. The Tulare County Pest Control District, however, does not participate in this abatement program except for a 1.6-km2 zone around the Lindcove Research and Extension Center, Exeter, CA. To quantify CTV spread under these two disparate management programs, CTV surveys were conducted in abatement plots with mandatory aphid control and nonabatement plots. Abatement plot surveys used hierarchical sampling of 25% of trees with samples pooled from four adjacent trees. Detection of MCA13+ CTV in a sample prompted resampling and testing of individual trees. From 2008 to 2018, incidence of CTV increased by an average of 3.9%, with only two MCA13+ samples detected. In contrast, in nonabatement plots, incidence of CTV increased by an average of 4.6% between 2015 and 2018. Increase in MCA13-negative (MCA−) isolates was 11 times greater than that of MCA13+ isolates, with the number of MCA13+ trees increasing by 19 trees between 2015 and 2018. MCA13− isolates were more randomly distributed, suggesting primary spread, whereas MCA13+ CTV isolates were more aggregated, suggesting some secondary spread. These results suggest that spread of MCA13+ isolates was limited by a combination of tree removal and aphid vector suppression. MCA13+ samples were VT isolates with some mixtures with T30 isolates. Despite the presence of VT isolates, all CTV-infected trees were asymptomatic.


1989 ◽  
Vol 16 (3) ◽  
pp. 315-320
Author(s):  
Ruth Marcus ◽  
Hovav Talpaz ◽  
Moshe Bar-Joseph

2006 ◽  
Vol 49 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Dae Hyun Kim ◽  
Hye Kyung Shim ◽  
Jae Wook Hyeon ◽  
Hyeog Mo Kwon ◽  
Kwang Sik Kim ◽  
...  

1995 ◽  
Author(s):  
Richard Lee ◽  
Moshe Bar-Joseph ◽  
K.S. Derrick ◽  
Aliza Vardi ◽  
Roland Brlansky ◽  
...  

Citrus tristeza virus (CTV) is the most important virus disease of citrus in the world. CTV causes death of trees on sour orange rootstock and/or stem pitting of scions regardless of rootstock which results in trees of low vigor, reduced yield with reduction in size and quality of fruit. The purpose of this project was to produce monoclonal antibodies (MABs) to CTV coat protein (CP), develop single domain antibodies (dAbs) or Fab fragments which neutralize the infection by binding to the virus, and to produce transformed plants which express the dAbs. The objectives of this research have been met and putative transgenic tobacco and citrus plants have been developed. These putative transgenic plants are presently undergoing evaluation to determine the level of dAbs expression and to determine their resistance to CTV. Additionally, the CTV genome has been sequenced and the CP gene of several biologically characterized CTV strains molecular characterized. This has indicated a correlation between CP sequence homology and biological activity, and the finding of DI RNAs associated with some CTV strains. Several MABs have been produced which enable broad spectrum identification of CTV strains while other MABs enable differentiation between mild and severe strains. The use of selected MAbs and determination of the CP gene sequence has enabled predictions of biological activities of unknown CTV isolates. The epitopes of two MABs, one reacting selectively with severe CTV strains and the other reacting with all strains, have been characterized at the molecular level.


Sign in / Sign up

Export Citation Format

Share Document