scholarly journals Fusarium Wilt of Gerbera Caused by a Fusarium sp. in Brazil

Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 655-655 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. Shiniti Uchimura ◽  
M. L. Gullino

In 2006, gerbera (Gerbera jamesonii) plants, cvs. Basic, Xena, and Olimpia grown for cut flower production in two greenhouse farms in the region of Guarapuava, Paraná, Brazil, exhibited symptoms of a wilt disease. Affected plants (approximately 20, 60, and 50% on cvs. Basic, Xena, and Olimpia, respectively) were stunted and developed yellow leaves unilaterally with initially brown and eventually black streaks in the vascular system. The first symptoms occurred 2 months after transplanting during the hottest period of the summer with an average air temperature of 27°C. Vascular streaks in the yellow leaves were continuous with a brown discoloration in the vascular system of the crown and upper taproot. Occasionally, the leaves of affected plants turned red. A Fusarium sp. was consistently and readily isolated onto a Fusarium-selective medium from symptomatic vascular tissue sampled from the crown of infected plants. Colonies were identified as Fusarium oxysporum on the basis of colony and conidia morphology (1) after subculturing on potato dextrose agar. Since F. oxysporum f. sp. chrysanthemi has been previously reported on Chrysanthemum morifolium, Argyranthemum frutescens, and gerbera (4), pathogenicity tests were carried out by using one monoconidial isolate obtained from wilted plants and one Italian isolate (F. oxysporum f. sp. chrysanthemi MASS 6). The isolates of F. oxysporum were grown in casein hydrolysate in shake culture (90 rpm) for 10 days at 25°C with 12 h of fluorescent light per day. Healthy rooted plants of 30-, 20-, and 45-day-old C. morifolium (cv. Captiva), A. frutescens (cv. Stella 2000), and gerbera (cvs. Jaska, Dalma, and Excellence), respectively, were inoculated by separately dipping roots into a conidial suspension (5 × 107 conidia/ml) of the two isolates of F. oxysporum. Plants were transplanted (one plant per pot) into pots (3.5 liter vol). Noninoculated plants served as control treatments. Plants (15 per treatment) were grown in a glasshouse at an average day temperature of 32°C and night temperature of 23°C (minimum 21°C and maximum 43°C). Wilt symptoms and discoloration of the vascular system in roots, crown, and petioles developed within 29 days on C. morifolium, 26 days on A. frutescens, and 14 days on gerbera. Noninoculated plants remained healthy. F. oxysporum was consistently reisolated from infected plants. The pathogenicity test was carried out twice. Gerbera wilt caused by F. oxysporum f. sp. chrysanthemi was recently reported in Italy (2) and Spain (3). Currently, the wilt of gerbera in the area of Paraná is limited to two farms. To our knowledge, this is the first report of the disease in Brazil as well as in South America. References: (1) C. Booth. Fusarium. CMI, Kew, UK, 1977. (2) A. Garibaldi et al. Plant Dis. 88:311, 2004. (3) A. Garibaldi et al. Plant Dis. 91:638, 2007. (4) A. Minuto et al. J. Phytopathol. 155:373, 2007.

Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 638-638 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
A. M. Prados-Ligero ◽  
J. M. Melero-Vara ◽  
M. L. Gullino

In 2004, gerbera (Gerbera jamesonii cv. Excellence) plants, grown for cut flowers, were observed in a soilless cultivation system (coconut fiber substrate) in one farm in the Cadiz area (southwestern Spain) exhibiting symptoms of a wilt disease. Gerbera represents a relevant crop for the industry in the region, after rose and carnation. Affected plants were stunted and developed yellow leaves with initially brown and eventually black streaks in the vascular system. The vascular streaks in the yellow leaves were continuous with a brown discoloration in the vascular system of the crown and upper taproot. In some cases, the leaves of affected plants turned red. Fusarium spp. was consistently and readily isolated from symptomatic vascular tissue of infected plants onto a Fusarium-selective medium (3). Colonies were identified as F. oxysporum after subculturing on potato dextrose agar on the basis of morphological observations. Pathogenicity tests were carried out by using two monoconidial isolates, compared with an Italian one, obtained from wilted gerbera plants. Each isolate of F. oxysporum was grown in shake culture (90 rpm) for 10 days on casein hydrolysate at 25°C with 12 h of fluorescent light per day. Healthy rooted 30-day-old plants (cv. Jaska), were inoculated by dipping roots into a conidial suspension (5 × 107 conidia/ml) in one of the three test isolates of F. oxysporum. Plants were transplanted (1 plant per pot) into pots (3.5 liter vol.) containing rockwool-based substrate. Noninoculated plants served as control treatments. Plants (15 per treatment) were grown in a glasshouse at an average day temperature of 30°C and night temperature of 24°C (minimum of 22°C and maximum of 41°C). Wilt symptoms and vascular discoloration in the roots, crown, and veins developed within 30 days on each inoculated plant, while noninoculated plants remained healthy. F. oxysporum was consistently reisolated from infected plants. The pathogenicity test was conducted twice. A wilt of gerbera was described in the Netherlands in 1952 (1) but its presence was not confirmed in further observations (4). Gerbera wilt was recently reported in Italy (2) and identified as F. oxysporum f. sp. chrysanthemi (A. Garibaldi, personal communication). Currently, the wilt of gerbera in Spain is limited to a few farms and a very limited percent (2 to 3%) of plants. References: (1) J. Arx and J. A. von Tijdschr. PlZiekt. 58:5, 1952. (2) A. Garibaldi et al. Plant Dis. 88:311, 2004. (3) H. Komada. Rev. Plant Prot. Res. 8:114, 1975. (4) G. Scholten. Neth. J. Plant Pathol. 76:212, 1970.


Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 684-684 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

During the spring of 2004, bitterroot (Lewisia cotyledon (S. Wats.) B.L. Robins), a flowering perennial of interest for rock gardens, showed symptoms of a wilt disease in several commercial nurseries located in Piedmont (northern Italy). Ten to thirty percent of plants from several different nurseries were affected. Wilted plants were first observed approximately 20 days after being transplanted into containers when outside temperatures ranged from 15 to 22°C. Symptomatic plants were stunted with yellowed leaves and brown-to-black veins. The vascular browning extended into the crown and was continuous with a brown discoloration in the vascular system of the crown and upper taproot. Fusarium oxysporum, identified on the basis of colony and conidia morphology (1), was consistently and readily isolated from symptomatic vascular tissue onto a Fusarium-selective medium (2). Three isolates were transferred to casein hydrolysate and grown for 10 days to produce conidial inoculum. Healthy 30-day-old plants were inoculated by dipping roots into a (1 × 106 CFU/ml) conidial suspension. Plants were then transplanted into pots filled with steam-sterilized soil. Noninoculated plants served as a control. Plants (12 per treatment) were placed in a climatic chamber at 25°C. Wilt symptoms and vascular discoloration in the roots, crown, and veins developed within 20 days on each inoculated plant, while noninoculated plants remained healthy. F. oxysporum was consistently reisolated from symptomatic plants. The pathogenicity test was conducted twice with the same result. One isolate of the pathogen has been deposited in the ATCC culture collection. To our knowledge, this is the first report of F. oxysporum on L. cotyledon in Italy and elsewhere in the world. Currently, this disease is present in several nurseries in the Piedmont Region of Italy. References: (1) C. Booth. Fusarium. CMI, Kew, UK, 1977. (2) H. Komada. Rev. Plant Prot. Res. 8:114, 1975.


Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 309-309 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

During the fall of 2002, African daisy (Osteospermum sp.) plants showing symptoms of a wilt disease were observed in a commercial, nonheated glasshouse in Albenga in northern Italy. Wilted plants were first observed when outside temperatures were between 15 and 28°C. Symptoms were first observed on seedlings 40 days after they had been transplanted into pots. The vascular tissues of affected plants appeared brown. These plants were stunted and developed yellowed leaves with brown or black streaks in the vascular system. The vascular streaks in the yellow leaves extended from the crown and were continuous with a brown discoloration in the vascular system of the crown and upper taproot. Fusarium oxysporum was consistently and readily isolated from symptomatic vascular tissue onto a Fusarium-selective medium (1). Healthy, rooted, 40-day-old plants were inoculated by root-dip with a conidial suspension (1 × 107 CFU/ml) of three isolates of F. oxysporum obtained from infected plants and transplanted into pots filled with steam-sterilized soil. Noninoculated plants served as control treatments. Plants (10 per treatment) were grown in a glasshouse at an average temperature of 25°C (minimum of 12°C and maximum of 39°C). Wilt symptoms and vascular discoloration in the roots, crown, and veins developed within 20 days on each inoculated plant, while noninoculated plants remained healthy. F. oxysporum was consistently reisolated from infected plants. The pathogenicity test was conducted twice. To our knowledge, this is the first report of F. oxysporum on Osteospermum sp. in Italy or elsewhere in the world. Reference: (1) H. Komada. Rev. Plant Prot. Res. 8:114, 1975.


Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 311-311 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

In 2002, gerbera (Gerbera jamesonii cv. Kaiki) plants that were grown for cut flowers in a soilless cultivation system (rockwool substrate) at Albenga (Savona) in northern Italy were observed exhibiting symptoms of a wilt disease. During the summer of 2002, in a commercial gerbera farm in the province of Imperia (northern Italy), a similar wilt was also observed on cvs. Red Bull, Anedin, and Gud finger that were grown in soil. In both cases, the planting material originated from the Netherlands. During 2003, wilted plants (cvs. Red Bull, Basic, and Cirill) were repeatedly observed in other commercial greenhouses located in the same area. Affected plants were stunted and developed yellowed leaves with initially brown and eventually black streaks in the vascular system. The vascular streaks in the yellow leaves were continuous with a brown discoloration in the vascular system of the crown and upper taproot. In some cases, the leaves of affected plants turned red. From these plants, Fusarium spp. were consistently and readily isolated from symptomatic vascular tissue onto a Fusarium-selective medium (2). Colonies were identified as F. oxysporum after subculturing on potato dextrose agar. Healthy rooted 30-day old plants (cv. Dino) were inoculated by dipping roots into a conidial suspension (5 × 107 conidia per ml) in one of six test isolates of F. oxysporum. Plants were transplanted (1 plant per pot) into pots (3.5 l vol) containing rockwool-based substrate. Noninoculated plants served as control treatments. Plants (21 per treatment) were grown in a glasshouse with an average day temperature of 31°C and night temperature of 25°C (minimum of 20°C and maximum of 42°C). Wilt symptoms and vascular discoloration in the roots, crown, and veins developed within 30 days on each inoculated plant, while noninoculated plants remained healthy. F. oxysporum was consistently reisolated from infected plants. The pathogenicity test was conducted twice. To our knowledge, this is the first report of the presence of F. oxysporum on gerbera in Italy. A wilt of gerbera was described in the Netherlands in 1952 (1) but its presence was not confirmed in further observations (3). Reference: (1) J. Arx and J. A. von Tijdschr. PlZiekt. 58:5, 1952 (2) H. Komada. Rev. Plant Prot. Res. 8:114, 1975. (3) G. Scholten. Neth. J. Plant Pathol. 76:212, 1970.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1191-1191 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
A. Poli ◽  
M. L. Gullino

During summer 2010, symptoms of a wilt disease were observed in a commercial farm in northern Italy on Crassula ovata (jade plant). First symptoms consisted of chlorosis and premature drop of still turgid leaves. As the disease progressed, leaves turned yellow and wilted before dropping off and the stem wilted, bent, and eventually rotted starting from the base. In some cases, the stem broke or the basal portion of the leaf rotted. Brown discolorations were observed in the vascular system. Of 10,000 plants, 65% (cv. Mini) and 5% of 600 plants (cv. Magical Tree) were affected. Premature dropping of leaves was more frequent on cv. Magical Tree. Using the Komada's Fusarium-selective medium, a fungus was consistently and readily isolated from symptomatic vascular tissues of plants belonging to both cultivars. Isolates obtained from both cultivars were purified, subcultured on potato dextrose agar (PDA), and single-spore cultures were obtained. On PDA, both isolates produced pale violet, abundant, aerial mycelium, felted in old cultures, with purple pigments in the agar. The isolates were grown on Spezieller Nährstoffarmer agar for characterization of macroconidia and microconidia (1). Both isolates produced sparse, 3 to 5 septate, nearly straight macroconidia measuring 30 to 56 × 3 to 5 (average 40 × 4) μm with a short apical cell and a foot-shaped basal cell. Sporodochia were not observed. Unicellular, oval-elliptical microconidia measuring 5 to 13 × 3 to 4 (average 8 × 3) μm were produced on short monophialides. Chlamydospores were abundant, single and sometime in pairs, terminal and intercalary, rough walled, and measured 6 to 9 μm. Such characteristics are typical of Fusarium oxysporum (3). The ITS region (internal transcribed spacer) of rDNA was amplified with primers ITS1/ITS4 (4) and sequenced. BLASTn analysis of an isolate from C. ovata cv. Mini (515 bp, Accession No. HQ682196) and C. ovata cv. Magical Tree (509 bp, Accession No. HQ682197) showed an E-value of 0.0 with F. oxysporum. For these sequences, pairwise alignment of EMBOSS (E.B.I. - The European Bioinformatics Institute) revealed identity and similarity of 99.0%. To confirm pathogenicity, tests were conducted on 5-month-old plants of cvs. Mini and Magical Tree. Plants (three per treatment) were inoculated by dipping roots in a 1 × 106 CFU/ml conidial suspension of the two isolates of F. oxysporum prepared from 10-day-old cultures grown on casein liquid medium (2), shaken (90 rpm) for 10 days at 24°C ± 1 (12-h fluorescent light, 12-h dark). Inoculated plants were transplanted into pots filled with steamed mix (sphagnum peat/perlite/pine bark/clay; 50:20:20:10) and maintained in a plant growth chamber at 25 ± 1°C under a regimen of 12 h per day of fluorescent light. Inoculated plants belonging to both cultivars showed typical first symptoms of Fusarium wilt after 13 days. In the following days, leaves dropped, stems wilted, and plants died. Noninoculated plants remained healthy. F. oxysporum was reisolated from inoculated plants. The pathogenicity test was conducted twice. This is, to our knowledge, the first report of F. oxysporum on C. ovata in Italy or worldwide. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Professional, Ames, IA, 2006. (2) A. Minuto et al. Phytoparasitica 36:294, 2008. (3) B. A. Summerell et al. Plant Dis. 87:117, 2003. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 496-496 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
A. Poli ◽  
M. L. Gullino

In the summer of 2009, a wilt of chicory was observed on 25 to 30% of 30-day-old Cichorium intybus L. cv. Clio plants grown outdoors on a commercial farm in Piedmont (northern Italy). Affected plants were chlorotic and stunted with poorly developed root systems compared with healthy plants. Black streaks were observed in the stem and proximal part of the leaf vascular system in wilted plants. Fusarium oxysporum Schltdl. was isolated from symptomatic vascular tissue on a Fusarium-selective medium (1) from 80% of samples. Grown on potato dextrose agar (PDA) for 4 days at 23°C, the colonies, initially white and later pale pink, produced hyaline microconidia that were oval-elliptical and cylindrical in shape measuring 5.6 to 14.9 (average 10.2) × 2.1 to 4.5 (3.0) μm, borne on short monophialides measuring 8.2 to 16.1 (average 13.2) × 2.1 to 4.2 (3.3) μm. Macroconidia were slightly curved, three-septate, with a slightly hooked apical cell and a foot-shaped basal cell measuring 24.9 to 41.6 (average 32.2) × 3.2 to 5.2 (4.3) μm. Chlamydospores were both terminally and intercalary, solitary but also in short chains (2 to 4 elements) measuring 21.1 to 41.0 (average 27.2) μm (2). The internal transcribed spacer (ITS) rDNA region was amplified using the primers ITS1/ITS4 and sequenced. BLASTn analysis of the 527-bp amplicon (GenBank Accession No. HQ644423) obtained had 98% sequence identity with F. oxysporum (GenBank Accession No. FJ605247). The translation elongation factor-1α (EF-1α) gene was amplified using primers EF-1/EF-2 and sequenced (GenBank Accession No. GU564259). The 663-bp fragment had 99% sequence identity with F. oxysporum (GenBank Accession Nos. EU313540, EU313539, and DQ837696). Pathogenicity tests were conducted on 15-day-old chicory plants from two cultivars (Clio and Katia). Thirty-five plants per cultivar were inoculated by dipping their roots in a 1 × 106 CFU/ml suspension of isolate FusCic45B recovered from wilted chicory. Inoculated and noninoculated plants were transplanted into five pots filled with 10 liters of steamed mix (peat/perlite/sand, 60:20:20 vol/vol) and were maintained in a glasshouse at 25 to 27°C. Wilt symptoms and vascular discoloration of the roots, crown, and veins developed 15 days after inoculation on all inoculated plants. Plants of cv. Clio were more susceptible. F. oxysporum was always reisolated from infected plants using the Fusarium-selective medium. All noninoculated plants remained healthy. The pathogenicity test was conducted twice. To our knowledge, this is the first report of wilt caused by F. oxysporum on chicory, C. intybus, in Italy as well as worldwide. References: (1) H. Komada. Rev. Plant Prot. Res. 8:114, 1975. (2) E. Nelson et al. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park, 1983.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1078-1078 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. Troisi ◽  
M. L. Gullino

In the summer of 2007, a wilt of endive (Cichorium endivia) cv. Myrna plants was observed on several commercial farms near Alessandria in northern Italy. Approximately 40% of the plants on each farm were symptomatic. Affected plants were stunted and yellow and their root systems were poorly developed. Basal leaves eventually wilted. Black streaks were observed in the proximal part of the leaf vascular system. Fusarium oxysporum was consistently isolated from symptomatic vascular tissue on a Fusarium-selective medium (1). To confirm identification of the pathogen, the translation elongation factor 1α and the ribosomal DNA intergenic spacer (IGS) region were partially sequenced (2). Genomic DNA was extracted from mycelia growing on potato dextrose agar. Amplification of the EF-1α region generated a sequence of 648 bp; the IGS amplicon was 2,500 bp. The EF-1α sequence (GenBank Accession No GQ398152) was 99% similar to the sequence of a F. oxysporum strain isolated from soil and a strain pathogenic on cotton plants (GenBank Accession No. EU246574). The IGS sequence (GenBank Accession No GQ398153) was 97% similar to the sequence of a F. oxysporum strain (GenBank Accession No. EF661647). Pathogenicity tests were conducted on 15-day-old endive plants (cv. Myrna). Ten plants were inoculated by dipping their roots in a 1 × 106 CFU/ml suspension of one of the isolates recovered from a wilted endive plant. Inoculated and noninoculated plants were transplanted into pots filled with steamed soil and maintained in a glasshouse at 23 to 28°C. Wilt symptoms and vascular discoloration of the roots, crown, and veins developed 60 days after inoculation. F. oxysporum was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was conducted twice. To our knowledge, this is the first report of wilt caused by F. oxysporum on endive in Italy. References: (1) H. Komada. Rev. Plant Prot. Res. 8:114, 1975. (2) G. Mbofung et al. Phytopathology 97:87, 2007.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1163-1163 ◽  
Author(s):  
K. Perveen ◽  
N. Bokhari

In November 2008, a wilt of lavender (Lavandula pubescens) seedlings was observed in the greenhouse at King Saud University, Riyadh, Saudi Arabia. Affected seedlings were wilted and the root system was poorly developed. Diseased stems developed a dark coloration that extended down to the roots. Vascular tissue of the affected seedlings appeared red or brown. Isolations consistently yielded a fungus growing from the discolored stem tissue when placed on potato dextrose agar. The macroscopic characteristics of the colony, as well as microscopic structures, were used to identify the fungus as Fusarium oxysporum (2). Oval to elliptical microconidia without septa and originating from short phialides were used to distinguish the species from F. solani (1). The fungus was authenticated by the ITCC (Indian Type Collection Centre), Indian Agricultural Research Institute, New Delhi, India, and given I.D. No. 7532.09. For conducting further experiments, healthy seedlings of L. pubescens were obtained from the botanical garden of the King Saud University and grown in steam-sterilized soil. Healthy seedlings of lavender were inoculated using a root-dip method with a conidial suspension (1 × 107 CFU/ml) of one strain of F. oxysporum obtained from infected plants. Inoculated seedlings were then transplanted into steam-sterilized soil. Plants inoculated with sterilized water (1 ml per plant) served as control treatments. Wilt symptoms and vascular discoloration in the roots and crown developed within 20 days on all plants inoculated with the pathogen, while control plants remained asymptomatic. F. oxysporum was consistently reisolated from symptomatic plants. The pathogenicity test was conducted twice. To our knowledge, this is the first report of F. oxysporum on L. pubescens in Saudi Arabia or elsewhere in the world, and this newly identified disease may be a potential threat to commercial production of lavender. References: (1) J. F. Leslie and B. A. Summerell. Page 212 in: The Fusarium Laboratory Manual. Blackwell Publishing Professional, Hoboken, NJ, 2006. (2) P. C. Nelson et al. Clin. Microbiol. Rev. 7:479, 1994.


2014 ◽  
Vol 40 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Roberto Luis De Rossi ◽  
Erlei Melo Reis

Northern corn leaf blight, caused by Exserohilum turcicum (Et), is a disease of widespread occurrence in regions where corn, sweetcorn and popcorn are grown. This disease has great potential to cause damage and has been studied for years, but the association of its causal agent with seeds remains unconfirmed. Thus, the availability of a sensitive method to detect and quantify the inoculum in seeds, even at low incidence, is essential. The aim of this study was to develop a method to detect and quantify the presence of the fungus infecting and infesting corn and popcorn seeds. Artificially and naturally infected seeds were employed to develop the medium. The semi-selective medium was composed of carbendazim (active ingredient) (60 mg/L), captan (30 mg/L), streptomycin sulfate (500 mg/L) and neomycin sulfate (600 mg/L) aggregated to the medium lactose casein hydrolysate agar medium. By using this, Et was detected in naturally infected corn seeds, showing 0.124% incidence, in four out of ten analyzed samples. In addition, 1.04 conidia were detected per infested seed. By means of isolation, pathogenicity test, morphological characterization and comparison with descriptions of the species in the literature, the fungus isolated from the seeds was confirmed to be Et. Both infection and infestation were considered low; thus, for studies of Et detection in corn seeds, the use of semi-selective medium and more than 1,200 seeds/sample is suggested.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1158-1158 ◽  
Author(s):  
Y. H. Liu ◽  
T. Lin ◽  
C. S. Ye ◽  
C. Q. Zhang

Blueberry (Vaccinium corymbosum) production is developing quickly in China with about 20,000 ha presently cultivated. In 2010 in Lin'an, Zhejiang Province, plants developed an apparently new disease of blueberry (cv. Duke) with symptoms consisting of wilting of foliage, stunting of plants, and reduced fruit yields. Internal vascular and cortical tissues of plant crowns showed a brown to orange discoloration. Approximately 3% of the plants in the commercial plantings were affected and eventually died after 50 to 60 days. Infected plant samples (stems and roots) collected from different fields were surface sterilized with 1.5% sodium hypochlorite for 2 min, rinsed in water, plated on 2% potato dextrose agar (PDA), and incubated at 25°C in the dark for 1 week. Single conidium cultures were consistently isolated and cultured on acidified PDA (APDA) for morphological characterization (1,2). Colonies were light with purple mycelia, and beige or orange reverse colony colors developed after 7 days incubation at 25°C. Colonies producing abundant microconidia and macroconidia. Microconidia were hyaline and oval-ellipsoid to cylindrical (3.9 to 9.6 × 1.1 to 3.4 μm). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (28.6 to 37.5 × 3.3 to 4.2 μm). Morphology and development of macroconidia and microconida were consistent with a description of Fusarium oxysporum Schltdl (1,2). The ribosomal internal transcribed spacers ITS1 and ITS2 of eight isolates were amplified using primers ITS1/ITS4 on DNA extracted from mycelium and nucleotide sequences showed 100% similarity to that of F. oxysporum. To confirm pathogenicity, 20 blueberry plants (cv. Duke) were inoculated by dipping the roots into a conidial suspension (107 conidia per ml) for 30 min. The inoculated plants were transplanted into pots containing sterilized peat and maintained at 25°C and 100% relative humidity in a growth chamber with a daily 12-h photoperiod of fluorescent light. The pathogenicity test was conducted twice. Within 40 days, all inoculated plants developed wilt symptoms similar to that observed in the field. No symptoms were observed on plants dipped into distilled water. The fungus was successfully re-isolated from crowns and roots cultured on APDA, exhibiting morphological characteristics identical to F. oxysporum (1,2), confirming Koch's postulates. To our knowledge, this is the first report of blueberry wilt caused by Fusarium. References: (1) P. M. Kirk et al. The Dictionary of the Fungi, 10th edition, page 159. CABI Bioscience, Wallingford, UK, 2008. (2) W. C. Snyder and H. N. Hansen. Am. J. Bot. 27:64, 1940.


Sign in / Sign up

Export Citation Format

Share Document