cichorium intybus
Recently Published Documents


TOTAL DOCUMENTS

800
(FIVE YEARS 162)

H-INDEX

39
(FIVE YEARS 5)

Plant Disease ◽  
2021 ◽  
Author(s):  
Tiago Silva Jorge ◽  
Maria Geane Fontes ◽  
Mirtes Freitas Lima ◽  
Leonardo Silva Boiteux ◽  
Maria Esther N. Fonseca ◽  
...  

Leaf chicory (Cichorium intybus L.) is a nutritionally rich vegetable used in regional cuisine in Brazil. Plants of C. intybus displaying symptoms (viz. chlorotic and necrotic ringspots, mosaic, and leaf deformation) similar to that induced by orthotospoviruses (genus Orthotospovirus, family Tospoviridae) were observed in three fields (≈ 0.2 ha each) in Gama County, in the Federal District, Brazil, from September 2016 to January 2020 in plants of the cultivars ‘Folha-Larga’ and ‘Spadona’ (Fig. 1). Incidence of symptomatic plants was nearly 10% in each field. Transmission electron microscopic examination of thin sections from symptomatic leaf samples showed typical membrane-bounded orthotospovirus particles within cisternae of spongy parenchymal cells (Fig 2). Two individual leaf samples per field were collected and submitted to dot enzyme-linked immunosorbent assay with polyclonal antisera against N protein of tomato spotted wilt virus (TSWV), groundnut ringspot virus (GRSV) and tomato chlorotic spot virus (TCSV). Symptomatic samples strongly reacted only against GRSV antibodies. Total RNA was extracted (Trizol®, Sigma) from all six samples and used as template in RT-PCR assays. The primer J13 (5’-CCCGGATCCAGAGCAAT-3’) was employed for cDNA synthesis using M-MLV reverse transcriptase. PCR assays were done with the primer pair BR60/BR65 (Eiras et al., 2001) to obtain ≈ 500 bp fragment of untranslated region and partial N gene in the S RNA segment from each sample. Purified RT-PCR products of two randomly selected individual samples were directly sequenced (GenBank MW467981 and MZ126602) and their BLASTn analyses displayed 99 to 100% nucleotide identity to GRSV isolates previously reported infecting C. endivia L. in Brazil (Jorge et al., 2021). Our analyses combining N protein serology and N-gene sequencing (both directed to the S RNA segment) allowed us to confirm the GRSV infection of C. intybus, but the potential reassortant nature of these isolates (Webster et al., 2015; Silva et al., 2019) are unknown since their M RNA segments were not characterized. Individual leaf extracts (in phosphate buffer, pH 7.0) of the sequenced isolates were mechanically inoculated onto ten seedlings of two C. intybus cultivars (‘Folha Larga’ and ‘Pão-de-Açúcar’) and three plants each of the indicator hosts Capsicum chinense PI 159236, Nicandra physalodes; Nicotiana rustica; Datura stramonium; and tomato cv. Santa Clara. Systemic chlorotic and necrotic ringspots, mosaic, and leaf deformation developed in the indicator hosts and infection by GRSV was confirmed via serological assays 20 days after inoculation. However, no symptoms and no serological reaction to GRSV antibodies were observed on the C. intybus cultivars even after two successive mechanical inoculations. This transmission failure might be due to factors such as the requirement of the thrips vector(s), physicochemical barriers in the foliage or the presence of non-mechanically transmissible helper agent(s) necessary to ensure GRSV infection of C. intybus. The natural infection of C. intybus by a not fully characterized orthotospovirus (mostly likely TSWV) has been observed since 1938 in Brazil (Kitajima, 2020). Our report of GRSV infecting C. intybus is thus confirming previous speculations that similar symptoms in this vegetable crop were induced by orthotospovirus infection in Brazil. References: Eiras, M. et al. 2001. Fitopatol. Bras. 26: 170. Jorge, T. S. et al. 2021. Plant Dis. 105: 714. Kitajima, E.W. 2020. Biota Neotrop. 20: e2019932. Silva, J. M. F. et al. 2019. Viruses 11: 187. Webster, C.G. et al. 2015. Phytopathology 105: 388.


2021 ◽  
Vol 44 (5) ◽  
pp. 17-22
Author(s):  
Marija Ravlić ◽  
Vlatka Skokić ◽  
Nikolina Stojanović ◽  
Lucija Stanić ◽  
Matej Mijić ◽  
...  

Cilj istraživanja bio je utvrditi alelopatski potencijal lucerne (Medicago sativa L.) na klijavost sjemena i rast klijanaca rotkvice (Raphanus sativus L.), radiča (Cichorium intybus L. var. foliosum) i rajčice (Lycopersicon esculentum Mill.). Vodeni ekstrakti pripremljeni od suhe nadzemne mase lucerne u tri koncentracije (1 %, 2,5 % i 5 %) testirani su u laboratorijskim uvjetima. Alelopatski potencijal lucerne ovisio je o test vrsti, koncentraciji vodenog ekstrakta te mjerenom parametru. Najslabije djelovanje zabilježeno je na klijavost te rast klijanaca rajčice. Povećanjem koncentracije vodenog ekstrakta povećavao se i negativni alelopatski potencijal. Najmanji utjecaj vodenih ekstrakata zabilježen je na suhu masu klijanaca test vrsta.


2021 ◽  
Author(s):  
A Valente ◽  
M de Roode ◽  
M Peña-Espinoza ◽  
L Bornancin ◽  
H Simonsen ◽  
...  
Keyword(s):  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Kazemi ◽  
Mohammad Mehdi Moheghi ◽  
Reza Tohidi

AbstractWe designed this project to determine the nutritional potential and ruminal microbial fermentation properties of eight rangeland plants (Dracocephalum moldavica L., Melissa officinalis L., Ruta graveolens L., Perovskia abrotanoides Kar., Cichorium intybus L., Borago officinalis L., Peganum harmala L., and Teucrium polium L.) collected from the semi-arid region of Iran at two consecutive years (2019 and 2020) for ruminant diets. Medicago sativa as a common forage was also considered as control. We determined the chemical-mineral composition, buffering capacity, in vitro gas yield, ruminal fermentation, and protozoa population in a culture medium with the standard laboratory methods. A significant difference in chemical-mineral compounds was observed among the studied plants (p < 0.05). A lower crude protein range (6.28% for Cichorium intybus L. to 18.4% for Melissa officinalis L.) was observed rather than Medicago sativa (20.3%). The amount of calcium was highest in Peganum harmala L. (23.5–24.2 g/kg DM) and lowest in Ruta graveolens L. (1.15–1.25 g/kg DM). Dracocephalum moldavica L. exhibited the highest acid–base buffering capacity (235–242 mEq×10−3) among other plants. The highest decrease in total protozoa and other protozoan populations was observed when Perovskia abrotanoides Kar. was added to the culture medium. Teucrium Polium L. had the greatest potential gas yield and its total volatile fatty acid was comparable with Medicago sativa. It seems that eight plants are nutritionally suitable for partial replacement of the conventional plants such as Medicago sativa in diets of small ruminants, however dietary supplementation of Peganum harmala L. due to its alkaloids content should be done with caution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xuezhao Sun ◽  
Ian G. Andrew ◽  
Philip J. Harris ◽  
Simone O. Hoskin ◽  
Keith N. Joblin ◽  
...  

The cell walls of forage chicory (Cichorium intybus) leaves are known to contain high proportions of pectic polysaccharides. However, little is known about the distribution of pectic polysaacharides among walls of different cell types/tissues and within walls. In this study, immunolabelling with four monoclonal antibodies was used to map the distribution of pectic polysaccharides in the cell walls of the laminae and midribs of these leaves. The antibodies JIM5 and JIM7 are specific for partially methyl-esterified homogalacturonans; LM5 and LM6 are specific for (1→4)-β-galactan and (1→5)-α-arabinan side chains, respectively, of rhamnogalacturonan I. All four antibodies labelled the walls of the epidermal cells with different intensities. JIM5 and JIM7, but not LM5 or LM6, labelled the middle lamella, tricellular junctions, and the corners of intercellular spaces of ground, xylem and phloem parenchyma. LM5, but not LM6, strongly labelled the walls of the few sclerenchyma fibres in the phloem of the midrib and lamina vascular bundles. The LM5 epitope was absent from some phloem parenchyma cells. LM6, but not LM5, strongly labelled the walls of the stomatal guard cells. The differential distribution of pectic epitopes among walls of different cell types and within walls may reflect the deposition and modification of these polysaccharides which are involved in cell wall properties and cell development.


Sign in / Sign up

Export Citation Format

Share Document