scholarly journals Identification and Subgrouping of Cucumber mosaic virus with Mouse Monoclonal Antibodies

2000 ◽  
Vol 90 (6) ◽  
pp. 615-620 ◽  
Author(s):  
H. T. Hsu ◽  
L. Barzuna ◽  
Y. H. Hsu ◽  
W. Bliss ◽  
K. L. Perry

Using a mixture of isolates of Cucumber mosaic virus (CMV) from subgroups I and II as immunogens, 20 mouse hybridoma cell lines secreting monoclonal antibodies were produced. A reliable method for efficient detection and accurate subgrouping of CMV isolates has been developed. Tests with 12 well-characterized strains of CMV and other cucumoviruses demonstrated the presence of epitopes that were virus and subgroup specific. Analyses of 109 accessions of CMV isolates collected from various parts of the world revealed 70% were subgroup I, with 20% identified as subgroup II. Seven isolates (6%) did not react with group-specific antibodies but did react with antibodies that recognized all CMV isolates. Differential reactions among isolates suggested a total of 10 epi-topes were recognized. The antigenic diversity among subgroup II CMVs was greater than for the subgroup I isolates, even though fewer subgroup II isolates were tested.

1998 ◽  
Vol 44 (12) ◽  
pp. 1161-1170 ◽  
Author(s):  
A V Robold ◽  
A R Hardham

Monoclonal antibodies were generated against components on the surface of zoospores and cysts of the Oomycete, Phytophthora nicotianae, with the aim of obtaining antibodies diagnostic for this species of plant pathogen. A dipstick version of an enzyme-linked immunosorbent assay was used to screen hybridoma cell lines produced by following a coimmunization protocol in which a mouse was immunized with Phytophthora nicotianae cysts mixed with murine antisera raised against cysts of Phytophthora cinnamomi and Phytophthora cryptogea. Of the nine hybridoma cells lines which remained positive, five produced antibodies that reacted with species-specific epitopes on the surface of the spores. Immunofluorescence, immunogold, and immunoblot labelling showed that three of the five species-specific antibodies reacted with a polypeptide of relative molecular mass greater than 205 kDa which was distributed over the entire zoospore surface, including that of the two flagella. These antibodies also labelled the surface of cysts to varying degrees. The other two species-specific antibodies bound to the shaft of tubular mastigonemes that form two rows on the anterior flagellum. In immunoblots, one of these antibodies recognised a 40-kDa glycoprotein. Antibodies produced by the other four hybridoma cell lines reacted with all Phytophthora and Pythium species tested. The results (i) showed that the coimmunization technique effectively produced antibodies directed towards components specific for Phytophthora nicotianae in the presence of antigens common to many Phytophthora species, and (ii) revealed for the first time the biochemical nature of molecular constituents of flagellar mastigonemes in the Oomycetes.Key words: cell surface, flagella, immunodiagnostics, mastigonemes, monoclonal antibodies.


Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1457-1457 ◽  
Author(s):  
N. Sudhakar ◽  
D. Nagendra-Prasad ◽  
N. Mohan ◽  
K. Murugesan

During a survey in January 2006 near Salem in Tamil Nadu (south India), Cucumber mosaic virus was observed infecting tomatoes with an incidence of more than 70%. Plants exhibiting severe mosaic, leaf puckering, and stunted growth were collected, and the virus was identified using diagnostic hosts, evaluation of physical properties of the virus, compound enzyme-linked immunosorbent assay (ELISA) (ELISA Lab, Washington State University, Prosser), reverse-transcription polymerase chain reaction (RT-PCR), and restriction fragment length polymorphism analysis (DSMZ, S. Winter, Germany). To determine the specific CMV subgroup, total RNA was extracted from 50 infected leaf samples using the RNeasy plant RNA isolation kit (Qiagen, Hilden, Germany) and tested for the presence of the complete CMV coat protein gene using specific primers as described by Rizos et al. (1). A fragment of the coat protein was amplified and subsequently digested with MspI to reveal a pattern of two fragments (336 and 538 bp), indicating CMV subgroup II. No evidence of mixed infection with CMV subgroup I was obtained when CMV isolates representing subgroups I (PV-0419) and II (PV-0420), available at the DSMZ Plant Virus Collection, were used as controls. Only CMV subgroup I has been found to predominantly infect tomato in the Indian subcontinent, although Verma et al. (2) identified CMV subgroup II infecting Pelargonium spp., an ornamental plant. To our knowledge, this is the first report of CMV subgroup II infecting tomato crops in India. References: (1) H. Rizos et al. J. Gen. Virol. 73:2099, 1992. (2) N. Verma et al. J. Biol. Sci. 31:47, 2006.


Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1191 ◽  
Author(s):  
M. S. Wei ◽  
J. Kong ◽  
G. F. Li ◽  
J. Ma

1989 ◽  
Vol 127 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Anita Haase ◽  
J. Richter ◽  
F. Rabenstein

2009 ◽  
Vol 46 (7) ◽  
pp. 1527-1533 ◽  
Author(s):  
Haggag S. Zein ◽  
Jaime A. Teixeira da Silva ◽  
Kazutaka Miyatake

Sign in / Sign up

Export Citation Format

Share Document