scholarly journals First Report of Cucumber mosaic virus Subgroup II Infecting Lycopersicon esculentum in India

Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1457-1457 ◽  
Author(s):  
N. Sudhakar ◽  
D. Nagendra-Prasad ◽  
N. Mohan ◽  
K. Murugesan

During a survey in January 2006 near Salem in Tamil Nadu (south India), Cucumber mosaic virus was observed infecting tomatoes with an incidence of more than 70%. Plants exhibiting severe mosaic, leaf puckering, and stunted growth were collected, and the virus was identified using diagnostic hosts, evaluation of physical properties of the virus, compound enzyme-linked immunosorbent assay (ELISA) (ELISA Lab, Washington State University, Prosser), reverse-transcription polymerase chain reaction (RT-PCR), and restriction fragment length polymorphism analysis (DSMZ, S. Winter, Germany). To determine the specific CMV subgroup, total RNA was extracted from 50 infected leaf samples using the RNeasy plant RNA isolation kit (Qiagen, Hilden, Germany) and tested for the presence of the complete CMV coat protein gene using specific primers as described by Rizos et al. (1). A fragment of the coat protein was amplified and subsequently digested with MspI to reveal a pattern of two fragments (336 and 538 bp), indicating CMV subgroup II. No evidence of mixed infection with CMV subgroup I was obtained when CMV isolates representing subgroups I (PV-0419) and II (PV-0420), available at the DSMZ Plant Virus Collection, were used as controls. Only CMV subgroup I has been found to predominantly infect tomato in the Indian subcontinent, although Verma et al. (2) identified CMV subgroup II infecting Pelargonium spp., an ornamental plant. To our knowledge, this is the first report of CMV subgroup II infecting tomato crops in India. References: (1) H. Rizos et al. J. Gen. Virol. 73:2099, 1992. (2) N. Verma et al. J. Biol. Sci. 31:47, 2006.

Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1191 ◽  
Author(s):  
M. S. Wei ◽  
J. Kong ◽  
G. F. Li ◽  
J. Ma

Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1331-1331 ◽  
Author(s):  
J. R. Fisher ◽  
M.-C. Sanchez-Cuevas ◽  
S. T. Nameth ◽  
V. L. Woods ◽  
C. W. Ellett

Eryngium amethystinum (amethyst sea holly) is a herbaceous plant commonly grown as an ornamental perennial in U.S.D.A. hardiness zones 3 to 8. The plant thrives in dry areas with infertile soils and the flowers are often used in dried floral arrangements. Canna spp. (Canna), soft perennials (U.S.D.A. zone 9 and above), are becoming popular flowering plants because of their bright flowers and spectacular foliage. There are a variety of species that fall under the heading Canna spp., of which the most popular are C. glauca, C. indica, C. edulis, and C. iridiflora. Hybrids of Aquilegia (garden columbine), a hardy perennial (U.S.D.A. zones 3 to 9), flower in late spring through early summer. The genus is made up of a wide variety of cultivars. E. amethystinum exhibiting severe mosaic, yellowing, and stunting, along with Canna plants exhibiting severe stunting, chlorotic and distorted foliage, and mosaic, and garden columbine plants exhibiting stunting, leaf curl, chlorosis, and mosaic, collected from commercial plantings throughout the central Ohio area, were analyzed for the presence of virus infection with viral-associated, double-stranded RNA (dsRNA) analysis. dsRNA analysis resulted in a banding profile typical of that seen with members of the cucumovirus family of plant viruses. Plants positive for cucumovurus-like dsRNA were tested with a direct antibody sandwich enzyme-linked immunosorbent assay (ELISA). ELISA results confirmed the presence of cucumber mosaic virus (CMV) in all symptomatic plants tested. No evidence of dsRNA or CMV was found in any of the asymptomatic plants tested. Because all of these hosts are common in the perennial garden, they could serve as a reservoir host of CMV for other plants in the garden. This is the first report of CMV in E. amethystinum, Canna spp., and Aquilegia hybrids in Ohio.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1032-1035 ◽  
Author(s):  
John F. Murphy ◽  
Edward J. Sikora ◽  
Bernard Sammons ◽  
Wojciech K. Kaniewski

Three processing tomato (Lycopersicon esculentum Mill.) lines engineered to express the cucumber mosaic virus (CMV) capsid protein (CP) gene were evaluated in the summers of 1995 and 1996 under high levels of naturally occurring CMV disease pressure. One tomato line expressed the capsid protein gene from a subgroup II isolate of CMV (line 11527), whereas two lines (12261 and 12295) expressed the capsid protein genes from a CMV subgroup I and a subgroup II isolate. Evaluation of CMV incidence based on symptomatic plants revealed that only 9% and 8% of the plants in line 11527 were infected in 1995 and 1996, respectively, 5 weeks after being transplanted. None of the plants in line 12261 developed symptoms in 1995, whereas 26% were symptomatic in 1996. There were no symptomatic plants in line 12295 in either the 1995 or the 1996 trial. In contrast to the CMV transgenic lines, 96% and 95% of the susceptible control plants were symptomatic by the 5-week rating period. CMV incidence in the CMV transgenic lines was much higher when infection was based on detection of virus by enzyme-linked immunosorbent assay (ELISA). This was particularly true in the 1996 trial where no less than 97% of the plants within a treatment were determined to be infected. Though a relatively high percentage of the transgenic plants were infected, the amount of CMV that accumulated in these plants was significantly less than in the susceptible controls, which may explain the occurrence of the attenuated symptoms. Despite CMV infection of the transgenic lines in the Alabama field trials, the performance of these lines could be of practical value to growers.


1998 ◽  
Vol 38 (4) ◽  
pp. 375 ◽  
Author(s):  
Z. Singh ◽  
M. G. K. Jones ◽  
R. A. C. Jones

Summary. Transgenic tobacco (Nicotiana tabacum) plants of (i) cv. Samsun NN containing the cauliflower mosaic virus 35S constitutive promoter linked to a defective replicase (DR) gene derived from cucumber mosaic virus (CMV) subgroup I isolate Fny, and (ii) cv. Xanthi containing the CaMV 35S promoter linked to the coat protein (CP) gene of CMV subgroup I isolate C were tested for resistance to various Australian isolates of CMV. The tobacco plants were challenged with 3 CMV subgroup 1 isolates (BNRR, BMR and B6) using sap inoculation. When used to challenge non-transgenic tobacco plants with 5 subgroup II CMV isolates from lupins (LY, LCH, LAcc, LGu and LD), this inoculation method did not result in systemic infection so graft inoculation was used instead to challenge transgenic plants with these 5 isolates. When plants of the line with the DR gene were challenged with the 3 subgroup I isolates, extreme resistance was revealed as none showed symptoms and CMV was not detectable by ELISA. When the same 3 isolates were inoculated to the 3 lines with the CP gene, resistance was characterised by fewer plants becoming virus infected, delayed systemic movement and, in the plants that were infected, partial remission of symptoms plus somewhat decreased virus concentration. Challenge of transgenic plants with DR or CP with the 5 subgroup II isolates resulted in fewer plants becoming infected. Actual numbers of plants infected varied with line and subgroup II isolate and the DR gene was as effective as the CP gene at decreasing infection. With subgroup II isolate LY, infection was associated with remission of symptoms and with the other 4 isolates with delayed systemic movement. Thus the DR gene approach was more effective than the CP approach in obtaining extreme resistance against Australian subgroup I isolates of CMV. These results suggest that introducing a similar DR gene construct made from a subgroup II isolate from lupins into commercial lupin cultivars may be a suitable strategy for obtaining extreme resistance to subgroup II isolates from lupins.


1991 ◽  
Vol 116 (6) ◽  
pp. 1098-1102 ◽  
Author(s):  
Paula P. Chee ◽  
Jerry L. Slightom

Cotyledon explants of cucumber (Cucumis sativus L. cv. Poinsett 76) seedlings were cocultivated with disarmed Agrobacterium strain C58Z707 that contained the binary vector plasmid pGA482GG/cpCMV19. The T-DNA region of this binary vector contains plant-expressible genes for neomycin phosphotransferase II (NPT II), β -glucuronidase (GUS), and the coat protein of cucumber mosaic virus strain C (CMV-C). After infection, the cotyledons were placed on Murashige and Skoog medium containing 100 mg kanamycidliter. Putative transformed embryogenic calli were obtained, followed by the development of mature embryos and their germination to plants. All transformed RO cucumber plants appeared morphologically normal and tested positive for NPT IL Southern blot analysis of selected cucumber DNAs indicated that NPT II, GUS, and CMV-C coat protein genes were integrated into the genomes. Enzyme-linked immunosorbent assay and Western blot analysis indicated that the CMV-C coat protein is present in the protein extracts of progeny plants. These results show that the Agrobacterium-mediated gene transfer system and regeneration via somatic embryogenesis is an effective method for producing transgenic plants in Cucurbitaceae.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 198-198 ◽  
Author(s):  
J. A. Herrera-Vásquez ◽  
A. Alfaro-Fernández ◽  
M. C. Córdoba-Sellés ◽  
M. C. Cebrián ◽  
M. I. Font ◽  
...  

In February of 2008, in open-field-grown tomato crops (Solanum lycopersicum L.) from the central regions of Coclé, Herrera, Los Santos, and Veraguas of Panama, unusual disease symptoms, including deformation, necrosis, purple margins, interveinal yellowing, downward and upward curling of the leaflets alternately, necrotic lines in sepals and branches, fruits distorted with necrotic lines on the surface, and severe stunting, were observed. Tomato production was seriously damaged. To verify the identity of the disease, five symptomatic tomato plants from four fields of these regions were selected and analyzed by double-antibody sandwich (DAS)-ELISA using specific antibodies to Cucumber mosaic virus (CMV), Potato virus X (PVX), Potato virus Y (PVY), Tomato mosaic virus (ToMV), Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany), and Pepino mosaic virus (PepMV) (DSMZ, Braunschweig, Germany). Total RNA was extracted from all plants and tested using reverse transcription (RT)-PCR with three pairs of specific primers: one pair designed to amplify 586 bp of the coat protein gene of CMV (CMV-F 5′-CCTCCGCGGATGCTAACTT-3′ and CMV-R 5′-CGGAATCAGACTGGGAGCA-3′) and the other two pairs to Tomato torrado virus (ToTV) that amplify 580 and 574 bp of the polyprotein (4) and coat protein (Vp23) (3) region of RNA2, respectively; and by dot-blot hybridization with a digoxygenin-labeled RNA probe complementary to the aforementioned polyprotein. The serological analysis for PVX, PVY, ToMV, TSWV, and PepMV were negative. ToTV was detected in all samples analyzed. Three of these samples were also positive for CMV by serological and molecular analysis. No differences in symptom expression were observed between plants infected with both viruses or with ToTV alone. RT-PCR products were purified and directly sequenced. BLAST analysis of one CMV sequence (GenBank Accession No. EU934036) showed 98% identity with a CMV sequence from Brazil (most closely related sequence) (GenBank Accession No. AY380812) and 97% with the Fny isolate (CMV subgroup I) (GenBank Accession No. U20668). Two ToTV sequences were obtained (GenBank Accession Nos. EU934037 and FJ357161) and showed 99% and 98% identities with the polyprotein and coat protein region of ToTV from Spain (GenBank Accession No. DQ388880), respectively. CMV is transmitted by aphids and is distributed worldwide with a wide host range (2), while ToTV is transmitted by whiteflies and has only been reported in tomato crops in Spain and Poland and recently on weeds in Spain (1). To our knowledge, this is the first time ToTV has been detected in Panama and the first report of CMV/ToTV mixed infection. References: (1) A. Alfaro-Fernández et al. Plant Dis. 92:831, 2008. (2) A. A. Brunt et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Online Publication, 1996. (3) H. Pospieszny et al. Plant Dis. 91:1364, 2007. (4) M. Verbeek et al. Arch. Virol. 152:881, 2007.


Biologia ◽  
2008 ◽  
Vol 63 (5) ◽  
Author(s):  
Ali El-Borollosy ◽  
Sabry Mahmoud ◽  
Abdel-Sabour Khaled

AbstractCucumber mosaic virus (CMV, cucumovirus) is the most important virus infecting cucurbit crops in Egypt and worldwide causing significant loss in yield quality and quantity. The main target of the present work was to establish a simple controlling system for an Egyptian isolate of such virus (belonging to the subgroup I) via production of tobacco transgenic plants expressing viral coat protein (CP). Coat protein gene (cp) was isolated and amplified using immunocapture-reverse transcriptase-polymerase chain reaction (IC-RT-PCR) and primers with add-on restriction sites for SmaI and SacI enzymes. The genes were cloned in pBI121 vector plasmid between the CaMV 35S promoter and the nos terminator after removing the Gus gene by restriction enzymes digestion. The new construct was used for Agrobacterium tumefaciens transformation, which was then used for tobacco transformation. Evaluation of transformation success and CP expression degree were confirmed using indirect enzyme-linked immunosorbent assay (I-ELISA) and dot blot immuno-binding assay (DBIA). PCR and RT-PCR were used to study the integration of cp within genetic plant system and to what extent this gene was transcript. It was concluded that in spite of integration success some transformed plants can transcript the gene more than the others do. Plants resistance was tested by challenging with CMV under study and remarkable success was obtained in plants with higher gene transcription and translation degree.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 802-802 ◽  
Author(s):  
S. G. P. Nameth ◽  
J. R. Fisher

Lobelia (Lobelia erinus L.) is a common herbaceous annual used in flower beds and hanging baskets. The plant blooms from early to late summer. In the summer of 2000, Lobelia plants expressing virus-like symptoms were collected from a greenhouse-based production site in Ohio. Affected plants expressed a mild leaf mosaic and stunting. Viral-associated dsRNA was isolated from 7 g of symptomatic leaf tissue (1). Four dsRNAs were observed at 3.9, 3.0, 2.25, and 1.05 kb indicating the presence of a Cucumovirus. A fifth dsRNA at 0.75 kb also was observed, consistent with the presence of a satellite RNA. Enzyme-linked immunosorbent assay (ELISA) analysis (Agdia, Inc., Elkhart, IN) of symptomatic Lobelia tissue confirmed the presence of Cucumber mosaic virus (CMV). A (S)CARNA-5 (-) cDNA clone (American Type Culture Collection #45124) was labeled with digoxygenin (DIG) as per the manufacturer's instructions (Genius II DIG-DNA Labeling Kit, Boehringer Mannheim) and used as a diagnostic probe to detect this satellite RNA. Northern hybridization confirmed the identity of the satellite RNA (2). This is the first report of any satellite RNA associated with a virus infection in Lobelia and the first report of CMV in this host in Ohio. References: (1) J. R. Fisher and S. G. P. Nameth. HortScience 35:230–234, 2000. (2) R. A. Valverde et.al. Plant Dis. 74:255–258, 1990.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 430-430 ◽  
Author(s):  
N. L. Robertson ◽  
D. C. Ianson

In July 2003, noticeable red lesions were observed on rhubarb leaves (Rheum rhababarum cv. Kerwin) from a plant at the Arctic Plant Germplasm Research and Introduction Project in Palmer, AK. Extracts of leaf tissue tested positive for a potyvirus using indirect enzyme-linked immunosorbent assay (ELISA) and western blots with a monoclonal antibody specific to the potyvirus group (Agdia, Inc., Elkhart, IN). During the following growing season (June 2004), obvious chlorotic ringspots developed into red lesions on the same plant and an adjacent plant of the same cultivar. Partially purified particles that were isolated from the infected rhubarb plants were mechanically inoculated to an experimental host range (number of infected plants per total number of plants), resulting in lesions on leaves of Rheum palmatum (1 of 2) and Chenopodium amaranticolor (3 of 5) but none on C. quinoa (0 of 4). The leaves with local lesions from C. amaranticolor were ground in phosphate buffer (1 g of tissue per 10 ml of buffer), and the extract rubbed onto a set of plants resulting in lesions on R. hybridum (raponticum) (1 of 2), C. amaranticolor (1 of 4), and C. quinoa (1 of 4). The original diseased rhubarb plants and experimental symptomatic plants were confirmed to have a potyvirus using ELISA. Subsequent compound direct ELISA and western blot assays revealed that the virus reacted strongly to monoclonal or polyclonal antibodies to Turnip mosaic virus (TuMV) (Agdia, Inc.). Total RNA was extracted from leaves of the naturally infected rhubarb plants with an RNeasy Plant Mini Kit (Qiagen Sciences, Germantown, Maryland), and used in reverse-transcription-polymerase chain reaction (RT-PCR) with specific primers for TuMV (1) predicted to amplify a 1,134-bp 3′-terminal cDNA fragment encompassing the 3′-end of the nuclear inclusion protein gene (NIb), the coat protein gene, and the 3′-nontranslated region. A PCR product of approximately the expected size was obtained and then sequenced. Sequences (1,077 nt) that corresponded to the TuMV coat protein gene and 3′-terminal noncoding region were submitted to Genbank (Accession No. AY744930). Blast searches against NCBI (National Center for Biotechnology Information) contained high identities to many TuMV isolates with up to 96% (1,043 of 1,077) nucleotide identity (i.e., GenBank Accession No. AF169561). Similar high identities of up to 97% at the amino acid level occurred within the coat protein coding region (i.e., GenBank Accession No. BAC02892.1). Infected rhubarb plants were removed from the site and none of the remaining 109 plants tested positive for TuMV using ELISA. On the basis of the mechanical transmission to plant hosts, the definitive TuMV serology, and the consensus of sequenced regions with TuMV, we concluded that the causal agent of the diseased rhubarb plants was TuMV. Although TuMV has a wide plant host range occurring worldwide (2), to our knowledge, this is the first report of TuMV in rhubarb in Alaska and the first time that TuMV has been detected in Alaska. References: (1) P. Lehmann et al. Physiol. Mol. Plant Pathol. 51:195, 1997. (2) R. Provvidenti. Page 1340 in: Viruses of Plants. A. A. Brunt et al., eds. CAB International, Wallingford, UK, 1996.


Sign in / Sign up

Export Citation Format

Share Document