scholarly journals Environmental and Genetic Factors Influencing Self-Fertility in Phytophthora infestans

2000 ◽  
Vol 90 (9) ◽  
pp. 987-994 ◽  
Author(s):  
C. D. Smart ◽  
H. Mayton ◽  
E. S. G. Mizubuti ◽  
M. R. Willmann ◽  
W. E. Fry

Phytophthora infestans is generally regarded as heterothallic-requiring physical proximity of two individuals of different mating type (A1 and A2) for oosporogenesis. Recent reports of limited selfing in young cultures of this oomycete stimulated us to investigate factors contributing to the phenomenon. The ability to produce oospores rapidly (within 2 weeks) in pure, single individual cultures (self-fertility) was tested in 116 individual isolates. The 116 isolates were from geographically diverse locations (16 countries) and were genetically diverse. Mating type and growth medium were the most prominent factors in determining if an isolate would be self-fertile. The majority of A2 isolates (45 of 47 tested) produced oospores when grown on a 50:50 mixture of V8 and rye B medium. In contrast, the majority of A1 isolates (65 of 69 tested) did not produce oospores on this medium. None of the 116 isolates produced oospores when grown on rye B medium (with no V8 juice). Further tests on representative A1 and A2 isolates revealed that oatmeal agar, tomato juice agar, and V8-juice agar all induced the A2 mating type isolate to produce oospores but did not induce the A1 mating type isolate to produce oospores. Calcium carbonate and pH did not alter the self-fertile oospore production in either A1 or A2 mating type isolates. For in vivo tests, the application of fungicide to potato or tomato leaf tissue either before or after inoculation did not stimulate any individual isolate (one A2 and one A1 isolate) to produce oospores in infected tissue. However, in all of the controls for all experiments (in vivo and in vitro), many oospores were produced rapidly if both strains grew in physical proximity.

1995 ◽  
Vol 23 (4) ◽  
pp. 491-496
Author(s):  
Hanna Tähti ◽  
Leila Vaalavirta ◽  
Tarja Toimela

— There are several hundred industrial chemicals with neurotoxic potential. The neurotoxic risks of most of these chemicals are unknown. Additional methods are needed to assess the risks more effectively and to elucidate the mechanisms of neurotoxicity more accurately than is possible with the conventional methods. This paper deals with general tasks concerning the use of in vitro models in the evaluation of neurotoxic risks. It is based on our previous studies with various in vitro models and on recent literature. The induction of glial fibrillary acidic protein in astrocyte cultures after treatment with known neurotoxicants (mercury compounds and aluminium) is discussed in more detail as an important response which can be detected in vitro. When used appropriately with in vivo tests and with previous toxicological data, in vitro neurotoxicity testing considerably improves risk assessment. The incorporation of in vitro tests into the early stages of risk evaluation can reduce the number of animals used in routine toxicity testing, by identifying chemicals with high neurotoxic potential.


1977 ◽  
Vol 30 (1) ◽  
pp. 24-28 ◽  
Author(s):  
C D Price ◽  
W J Williams ◽  
A Pugh ◽  
D H Joynson
Keyword(s):  

2018 ◽  
Vol 46 (1) ◽  
pp. 14 ◽  
Author(s):  
Weibson Paz Pinheiro André ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Lorena Mayana Beserra de Oliveira ◽  
Iara Tersia Freitas Macedo ◽  
Fernanda Cristina Macedo Rondon ◽  
...  

Background: Gastrointestinal nematodes are one of the major health and economic problem of sheep and goats in the world. The control of these nematodes is carried out conventionally with synthetic anthelminths, which favored the selection of gastrointestinal nematode (GIN) populations multiresistant to anthelmintics. The emergence of anthelmintic resistance has stimulated the search for new alternatives to control small ruminant GIN, standing out the use of plants and their bioactives compounds, such as essential oils (EO). The objective of this review was to present the main characteristics and anthelmintic activity of EO, their isolated compounds and drug delivery systems in the control of GIN.Review: Essential oils are a complex blend of bioactive compounds with volatile, lipophilic, usually odoriferous and liquid substances. EO are composed of terpenes, terpenoids, aromatic and aliphatic constituents. EO has various pharmacological activities of interest in preventive veterinary medicine such as antibacterials, antifungals, anticoccicids, insecticides and anthelmintics. In vitro and in vivo tests are used to validate the anthelmintic activity of EO on GIN. In vitro tests are low cost screening tests that allow the evaluation of the anthelmintic activity of a large amount of bioactive compounds on eggs, first (L1) and third stage larvae (L3), and adult nematodes. The antiparasitic effect of EO is related to its main compound or to the interaction of the compounds. These bioactive compounds penetrate the cuticle of the nematodes by transcuticular diffusion, altering the mechanisms of locomotion, besides causing cuticular lesions. Following in vitro evaluation, the acute and sub-chronic toxicity test should be performed to assess the toxicity of the bioactive compounds and to define the dose to be used in in vivo tests. In vivo tests are more reliable because the anthelmintic effectiveness of bioactive compounds is evaluated after the metabolization process. The metabolization process of the bioactive compounds can generate metabolites that exhibit or not anthelmintic effectiveness. The in vivo tests assessing the anthelmintic effectiveness of bioactive compounds in sheep and goats are the fecal egg count reduction test and the controlled test.  OE promoted reduction of egg elimination in faeces which may be related to cuticular and reproductive alterations in GIN, and reduction of parasite burden in in vivo tests. Due to the promising results obtained with OE in the in vivo tests, interest has been aroused in using nanotechnology as an alternative to increase the bioavailability of OE and consequently, potentializing its anthelmintic effect, reducing the dose and  toxicity of the biocompounds. In addition to nanotechnology, the isolation and chemical modification of compounds isolated from OE have been employed to obtain new molecules with anthelmintic action and understand the mechanism of action of EO on the small ruminant GIN.Conclusion: The use of EO and their compound bioactive in the control of resistant populations of GIN is a promising alternative. The adoption of strategies in which natural products can replace synthetic anthelmintics, such as in dry periods and use synthetic anthelmintics in the rainy season when the population in refugia in the pasture is high, thus reducing the dissemination of GIN resistant populations. As perspective, the evaluation of pharmacokinetics and pharmacodynamics of these natural products should be performed so that one defines treatment protocols that optimize the anthelmintic effect.


2010 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Hugo F. Rivera ◽  
Erika P. Martínez ◽  
Jairo A. Osorio ◽  
Edgar Martínez

<p>Phytophthora infestans (Mont.) de Bary, agente causal de la gota de la papa, es considerado la principal limitante de la producción de este cultivo en Colombia. El control habitual del patógeno se realiza con fungicidas de tipo sistémico, que incrementan los costos de producción, pueden inducir la resistencia del patógeno y tiene un impacto negativo en el ambiente. Por tanto, se llevó a cabo este estudio con el propósito de buscar alternativas amigables con el ambiente, que hagan parte de un paquete tecnológico eficaz de control. Dos cepas nativas de Psedomonas fluorescens (039T y 021V), provenientes de cultivos de papa, fueron evaluadas contra P. infestans. Las suspensiones bacterianas y los biosurfactantes parcialmente purificados (BPP), producidos por éstas (obtenidos en medio mínimo de sales con querosén), fueron aplicados sobre foliolos desprendidos en ensayos in vitro y experimentos in vivo en plantas de papa, en condiciones controladas en casa de malla. Los resultados demostraron la capacidad que tienen los biosurfactantes y las suspensiones bacterianas para controlar al patógeno, ya que el BPP 039T logró reducir el nivel de severidad de la enfermedad en 79,9% in vitro y 38,5% in vivo, mientras que el BPP 021V redujo en 78,7% in vitro y 30,2% in vivo. Las suspensiones bacterianas redujeron el nivel de severidad en 72,4% (039T) y 66,1% (021V) en las evaluaciones in vitro y 35% en los experimentos in vivo. Los resultados de esta investigación muestran el potencial que tienen los biosurfactantes para el control de la gota en Colombia.</p><p> </p><p><strong>Evaluation of Biosurfactants Produced by Pseudomonas fluorescens for Potato Late Blight Control (Phytophthora infestans (Mont) de Bary) Under Controlled Conditions</strong></p><p>Phytophthora infestans (Mont.) de Bary, causal agent of potato late blight is considered the main limiting pathogen for the production of this crop in Colombia. The usual control of the disease has been performed with systemic fungicides which increase production costs, can induce pathogen resistance and have a negative impact on the environment. Therefore, this study was carried out in order to find effective and environmentally friendly control alternatives for potato late blight. Two Pseudomonas fluorescens native strains (039T and 021V) isolated from potato crops were evaluated against P. infestans. Bacterial suspensions (obtained from minimal salts medium added with kerosene) and partially purified biosurfactants (BPP) were applied on detached leaflets for in vitro assays and on potato plants in greenhouse, for in vivo assays and the measure of inhibitory effect of the disease was assessed. The results showed the ability of P. fluorescens biosurfactants and bacterial suspensions to control the pathogen. BPP 039T was able to reduce the level of severity disease by 79.9% in vitro and 38.5% in vivo, whereas BPP 021V decreased 78.7% in vitro and 30.2% in vivo. Bacterial suspensions reduced the severity level in 72.4% (039T) and 66.1% (021V) in vitro assessments and 35% in the in vivo experiment. These results show the potential of P. fluorescens biosurfactants to control the potato late blight in Colombia.</p>


1992 ◽  
Vol 15 (5) ◽  
pp. 284-288 ◽  
Author(s):  
A.C. Fisher ◽  
G.M. Bernacca ◽  
T.G. Mackay ◽  
W.R. Dimitri ◽  
R. Wilkinson ◽  
...  

This study has examined a range of methods of studying the calcification process in bovine pericardial and polyurethane biomaterials. The calcification methods include static and dynamic, in vitro and in vivo tests. The analytical methods include measurement of depletion rates of calcium and phosphate from in vitro calcifying solutions, analysis of tissue contents of calcium, histological staining of tissue sections for calcium, X-ray elemental analysis, by scanning electron microscopy, of calcium and phosphorus distributions over valve leaflets calcified in vitro under dynamic conditions. Bovine pericardium, in all test settings, calcified to a much greater degree than polyurethane biomaterials. Polyurethane extracts calcified to a greater degree than bulk polyurethanes. The test protocol used allows progress through increasily demanding calcification tests, with the possibility of eliminating unsuitable materials with tests of limited complexity and expense.


Sign in / Sign up

Export Citation Format

Share Document