scholarly journals Focal Adhesion Kinases and Calcium/Calmodulin-Dependent Protein Kinases Regulate Protein Tyrosine Phosphorylation in Stallion Sperm

2013 ◽  
Vol 88 (6) ◽  
pp. 138-138 ◽  
Author(s):  
L. Gonzalez-Fernandez ◽  
B. Macias-Garcia ◽  
S. C. Loux ◽  
D. D. Varner ◽  
K. Hinrichs
2015 ◽  
Vol 469 (2) ◽  
pp. 199-210 ◽  
Author(s):  
Ilaria Canobbio ◽  
Lina Cipolla ◽  
Gianni F. Guidetti ◽  
Daria Manganaro ◽  
Caterina Visconte ◽  
...  

We address the mechanism for Src family kinases activation downstream of G-protein-coupled receptors (GPCRs) in thrombin-stimulated blood platelets and we describe a novel interplay between Pyk2 and the Src kinases Fyn and Lyn in the regulation of Ca2+-dependent protein-tyrosine phosphorylation.


1994 ◽  
Vol 126 (2) ◽  
pp. 575-588 ◽  
Author(s):  
C L Hall ◽  
C Wang ◽  
L A Lange ◽  
E A Turley

The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is critical for cell locomotion.


1998 ◽  
Vol 275 (1) ◽  
pp. H84-H93 ◽  
Author(s):  
Yuan Yuan ◽  
F. Y. Meng ◽  
Q. Huang ◽  
James Hawker ◽  
H. Mac Wu

The transendothelial movement of solutes is a dynamic process controlled by a complex interaction between the cytoskeleton and adhesion proteins. The aim of this study was to examine whether protein tyrosine phosphorylation is involved in the regulation of endothelial barrier function. The apparent permeability coefficient of albumin ( P a) was measured in isolated and perfused coronary venules. Tyrosine phosphatase inhibitors, including phenylarsine oxide and sodium orthovanadate, dose and time dependently increased basal P a. Western blot analysis of cultured coronary venular endothelial cells revealed that inhibition of tyrosine phosphatase induced an increase in phosphotyrosine content in a number of proteins, including bands at 65–70 and 120–130 kDa, which were identified as paxillin and focal adhesion kinase (pp125FAK), respectively. The time course and dose responsiveness of protein tyrosine phosphorylation were tightly correlated with those of increases in P a. Furthermore, stimulation of endothelial cells with histamine or phorbol myristate acetate (PMA) enhanced tyrosine phosphorylation of paxillin and pp125FAK, which was blocked by the tyrosine kinase inhibitor damnacanthal. Correspondingly, the increases in venular permeability elicited by histamine and PMA were abolished in damnacanthal-treated venules. Taken together, the data suggest a possible involvement of protein tyrosine phosphorylation in the control of endothelial barrier function. Paxillin and its associated focal adhesion proteins may play a specific role in agonist-induced hyperpermeability responses in the endothelium of exchange vessels.


Sign in / Sign up

Export Citation Format

Share Document