boar spermatozoa
Recently Published Documents


TOTAL DOCUMENTS

795
(FIVE YEARS 61)

H-INDEX

54
(FIVE YEARS 6)

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1574
Author(s):  
Leyland Fraser ◽  
Karolina Wasilewska-Sakowska ◽  
Łukasz Zasiadczyk ◽  
Elżbieta Piątkowska ◽  
Krzysztof Karpiesiuk

This study aimed to characterize the protein composition of fractionated seminal plasma (SP) by liquid chromatography mass spectrometry (LC–MS/MS) analysis and investigate its effects on survival of frozen-thaw (FT) boar spermatozoa following storage. Seminal plasma (SP) was fractionated by gel filtration chromatography to give two fractions, SP1 with more than 40 kDa (>40 kDa) and SP2 with less than 40 kDa (<40 kDa). SP1 and SP2 were subjected to LC–MS/MS and bioinformatics analysis. Following cryopreservation, FT boar semen (n = 7) was thawed in Beltsville Thawing Solution (BTS), BTS + SP1 or BTS + SP2, stored at different periods and subjected to post-thaw (PT) quality assessment. A total of 52 and 22 abundant proteins were detected in SP1 and SP2, respectively. FN1, ANGPTL1, and KIF15 proteins were more abundance in SP1, whereas a high abundance of spermadhesins (PSP-I and PSP-II) was detected in SP2. Proteins of the fractionated SP were involved in various biological processes, such as cell motility and signal transduction. The dominant pathway of SP1 proteins was the apelin signaling pathway (GNA13, MEF2D, SPHK2, and MEF2C), whereas a pathway related to lysosome (CTSH, CTSB, and NPC2) was mainly represented by SP2 proteins. In most of the boars, significantly higher motility characteristics, membrane integrity, and viability were observed in FT spermatozoa exposed to SP1 or SP2 compared with BTS. The results of our study confirm that a combination of several proteins from the fractionated SP exerted beneficial effects on the sperm membrane, resulting in improved quality characteristics following PT storage.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Janyaporn Rungruangsak ◽  
Junpen Suwimonteerabutr ◽  
Kakanang Buranaamnuay ◽  
Sariya Asawakarn ◽  
Naphat Chantavisoote ◽  
...  

The present study was performed to compare the expression of sperm proteins, i.e. triosephosphate isomerase (TPI) and acrosin binding protein (ACRBP) and seminal plasma proteins, i.e. glutathione peroxidase 5 (GPX5) and fibronectin 1 (FN1), in boar semen with good, moderate and poor freezability. The study was conducted by determining the protein contents in 32 sperm samples and 38 seminal plasma samples of semen. The ejaculated semen was divided into two portions: the first portion was centrifuged to separate the pellet of sperm from the seminal plasma and the second portion was cryopreserved. After thawing, the ejaculates were classified into three groups according to their post-thawed sperm motility: good (60.2 ± 1.7%), moderate (29.3 ± 2.0%) and poor (16.6 ± 2.2%) freezabilities. The expressions of GPX5 and FN1 in seminal plasma and TPI and ACRBP in sperm were determined using Western blot analysis. It was found that, for sperm proteins, the level of TPI was negatively correlated with the post-thawed total sperm motility (r = -0.38, P = 0.029). For seminal plasma proteins, the level of FN1 in the seminal plasma was positively correlated with the post-thawed total sperm motility (r = 0.37, P = 0.021) and progressive motility (r = 0.39, P = 0.016). The expression of GPX5 was not correlated with any of the frozen–thawed sperm qualities (P &gt; 0.05). In conclusions, boar semen containing a high level of FN1 in seminal plasma has better freezability. Frozen–thawed sperm motility was positively correlated with the level of FN1 in boar seminal plasma and negatively correlated with TPI in boar spermatozoa.


Andrologia ◽  
2021 ◽  
Author(s):  
S. L. Soares ◽  
Camila R. C. Brito ◽  
Andreia Nobre Anciuti ◽  
Norton C. Gatti ◽  
Carine Dahl Corcini ◽  
...  
Keyword(s):  

Author(s):  
Yongjie Xu ◽  
Qiu Han ◽  
Chaofeng Ma ◽  
Yaling Wang ◽  
Pengpeng Zhang ◽  
...  

Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.


2021 ◽  
Vol 64 (1) ◽  
pp. 265-271
Author(s):  
Zhao Namula ◽  
Yasuhiro Isumi ◽  
Yoko Sato ◽  
Quynh Anh Le ◽  
Qingyi Lin ◽  
...  

Abstract. This study aimed to compare the quality and the penetration ability of frozen–thawed spermatozoa from three microminipigs and Large White boars and to evaluate the effects of caffeine and heparin as well as the sperm–oocyte co-incubation length on the fertilization and embryonic development in vitro. Results showed that the fertilization rates of spermatozoa from three microminipig boars were significantly lower than those of a Large White boar. In the post-thaw spermatozoa from one of three microminipig boars, the sperm quality, penetration ability, and the oocyte development after in vitro fertilization were significantly lower than those of the spermatozoa from other boars. The caffeine supplementation in the fertilization media increased the rates of fertilization and blastocyst formation for the microminipig spermatozoa with low sperm quality. In addition to caffeine supplementation, the rates of fertilization and blastocyst formation after using microminipig spermatozoa were significantly higher with a 10 h sperm–oocyte co-incubation than with 3 h of co-incubation length. Our results indicate that the differences between the males and the breed influence the quality and fertility of frozen–thawed boar spermatozoa. In conclusion, the presence of caffeine in the in vitro fertilization (IVF) medium and adequate length of sperm–oocyte co-incubation may have beneficial effects for improving IVF results when using microminipig spermatozoa with low quality.


2021 ◽  
Vol 166 ◽  
pp. 112-123
Author(s):  
Paweł Brym ◽  
Karolina Wasilewska-Sakowska ◽  
Marzena Mogielnicka-Brzozowska ◽  
Anna Mańkowska ◽  
Łukasz Paukszto ◽  
...  

Author(s):  
Vinicio Barquero ◽  
Carles Soler ◽  
Francisco Sevilla ◽  
Josué Calderón‐Calderón ◽  
Anthony Valverde

2021 ◽  
Vol 1 ◽  
pp. 1
Author(s):  
Maria Mercedes Satorre ◽  
Elizabeth Breininger

Objectives: Evaluate the effect of the packaging method in porcine semen cryopreserved with α-tocopherol on quality and functional sperm parameters. In porcine production, although the use of frozen semen is very limited, there are obvious advantages to use this technology. Material and Methods: Sperm samples were cryopreserved in pellets or straws with or without α-tocopherol and quality and functional parameters were determined in all groups. Results: As regards quality parameters, a significant individual effect was observed, with a similar behavior despite the packaging system evaluated. The same results were obtained in functional tests. Both packaging systems, pellets and straws, showed a similar behavior with respect to the effect of the antioxidant α-tocopherol on the quality and functional sperm parameters. Interestingly, the better results were obtained in pellets than in straws. Conclusion: The results obtained allow us to suppose that this efficient, economical and simple method, with little expensive equipment or supplies, can be used to cryopreserve boar spermatozoa for research. In fact, since the results have been better in tablets, if identification and storage problems of pellets were solved, this freezing method could be used for production purposes.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bin Zhang ◽  
Yan Wang ◽  
Caihong Wu ◽  
Shulei Qiu ◽  
Xiaolan Chen ◽  
...  

Abstract Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. Results In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. Conclusion The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.


Author(s):  
Yanbing Li ◽  
Jingchun Li ◽  
Qun Zhang ◽  
Qian Wang ◽  
Minghui Guo ◽  
...  

Background: The present study was aimed to investigate the effects of negative pressure applied before storage on the gene expression of motility related proteins in boar spermatozoa.Methods: Boar semen samples were collected and pooled and diluted with Modena solution containing 0.4% (w/v) of bovine serum albumin. Negative pressure was applied for 2-5 min using a vacuum pump with a barometer. The pressure applied was 0 (Control), -0.02 MPa (P2), -0.04 MPa (P4) and -0.08 MPa (P8). The expression of AQN-1, AQN-3, AWN, PSP-I, PSP-II gene in boar spermatozoa was evaluated.Result: Application of -0.04 MPa improved the sperm motility compared with the other groups. In conclusion, our results confirmed thatnegative pressure preservation at 17oC had an effect on the expression of boar sperm adhesion protein gene. The relative expression of AWN0PSP-I and PSP-II genes in boar sperm were lower under -0.04 MPa and -0.08 MPa pressure, which was beneficial to protect spermatozoa motility. 


Sign in / Sign up

Export Citation Format

Share Document