scholarly journals A Serum-Free Defined Culture System Which Maintains Follicle-Stimulating Hormone Responsiveness and Differentiation of Porcine Granulosa Cells1

1987 ◽  
Vol 36 (1) ◽  
pp. 167-174 ◽  
Author(s):  
P. A. Buck ◽  
D. W. Schomberg
Reproduction ◽  
2003 ◽  
pp. 527-538 ◽  
Author(s):  
C Allegrucci ◽  
MG Hunter ◽  
R Webb ◽  
MR Luck

The objective of this study was to develop a defined culture system in which bovine follicular and granulosa cells are grown in close contact with each other and with the extracellular matrix (ECM) component laminin. Granulosa and theca cells from follicles 4-6 mm in diameter were cultured on either side of laminin-coated BioCoat cell culture inserts in a serum-free medium containing 10 ng insulin ml(-1) at plating densities of 10(5) and 3 x 10(5) cells per membrane side. The cells adopted a clumped arrangement, maintained steroidogenic activity for at least 7 days and demonstrated paracrine communication by increased steroidogenesis and enhanced cell survival compared with cells in mono-culture. Co-cultured theca cells secreted significantly more androstenedione compared with cells in mono-culture. Granulosa cell viability was doubled by co-culture with theca cells. Co-cultures at both cell plating densities were responsive to treatment with physiological combinations of either FSH, LH and LR3 insulin-like growth factor I (IGF-I) (treatment A) or FSH, LR3 IGF-I and androstenedione (treatment B). Significantly more androstenedione was secreted in the presence of treatment A compared with controls. In contrast, oestradiol secretion was increased only by treatment B. Progesterone secretion was unaffected by treatment and did not increase during culture. Co-cultures at the higher plating density demonstrated higher theca cell survival and better maintenance of the follicular cell phenotype. In conclusion, this novel co-culture system provides a unique model for the study of paracrine communication between ovarian somatic cells and cell-ECM interactions during follicle growth.


1993 ◽  
Vol 8 (9) ◽  
pp. 1380-1386 ◽  
Author(s):  
Izaäk Schipper ◽  
Bart C.J.M. Fauser ◽  
Elizabeth B.O. van Gaver ◽  
Paul W. Zarutskie ◽  
Kristine D. Dahl

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Bai ◽  
Yun Chang ◽  
Amina Saleem ◽  
Fujian Wu ◽  
Lei Tian ◽  
...  

Abstract Introduction Spinal cord injury (SCI) is a neurological, medically incurable disorder. Human pluripotent stem cells (hPSCs) have the potential to generate neural stem/progenitor cells (NS/PCs), which hold promise in the treatment of SCI by transplantation. In our study, we aimed to establish a chemically defined culture system using serum-free medium and ascorbic acid (AA) to generate and expand long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) differentiated from hPSCs effectively and stably. Methods We induced human embryonic stem cells (hESCs)/induced PSCs (iPSCs) to neurospheres using a newly established in vitro induction system. Moreover, lt-NES cells were derived from hESC/iPSC-neurospheres using two induction systems, i.e., conventional N2 medium with gelatin-coated plates (coated) and N2+AA medium without pre-coated plates (AA), and were characterized by reverse transcription polymerase chain reaction (RT-PCR) analysis and immunocytochemistry staining. Subsequently, lt-NES cells were induced to neurons. A microelectrode array (MEA) recording system was used to evaluate the functionality of the neurons differentiated from lt-NES cells. Finally, the mechanism underlying the induction of lt-NES cells by AA was explored through RNA-seq and the use of inhibitors. Results HESCs/iPSCs were efficiently induced to neurospheres using a newly established induction system in vitro. lt-NES cells derived from hESC/iPSC-neurospheres using the two induction systems (coated vs. AA) both expressed the neural pluripotency-associated genes PAX6, NESTIN, SOX1, and SOX2. After long-term cultivation, we found that they both exhibited long-term expansion for more than a dozen generations while maintaining neuropluripotency. Moreover, the lt-NES cells retained the ability to differentiate into general functional neurons that express β-tubulin at high levels. We also demonstrated that AA promotes the generation and long-term expansion of lt-NES cells by promoting collagen synthesis via the MEK-ERK1/2 pathway. Conclusions This new chemically defined culture system was stable and effective regarding the generation and culture of lt-NES cells induced from hESCs/iPSCs using serum-free medium combined with AA. The lt-NES cells induced under this culture system maintained their long-term expansion and neural pluripotency, with the potential to differentiate into functional neurons. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document