scholarly journals α‐actinin 4 Knockdown Reduced Vasopressin‐Induced Aquaporin‐2 Expression in the Kidney Collecting Duct Cells

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Cheng Hsuan Ho ◽  
Ming‐Jiun Yu
2015 ◽  
Vol 30 (suppl_3) ◽  
pp. iii74-iii74
Author(s):  
Tae-Hwan Kwon ◽  
Jae-Eun Kim ◽  
Hyun Jun Jung ◽  
Yu-Jung Lee

2021 ◽  
pp. 104424
Author(s):  
Björn Reusch ◽  
Malte P. Bartram ◽  
Claudia Dafinger ◽  
Nicolàs Palacio-Escat ◽  
Andrea Wenzel ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 183
Author(s):  
Annarita Di Mise ◽  
Maria Venneri ◽  
Marianna Ranieri ◽  
Mariangela Centrone ◽  
Lorenzo Pellegrini ◽  
...  

Vasopressin V2 receptor (V2R) antagonists (vaptans) are a new generation of diuretics. Compared with classical diuretics, vaptans promote the excretion of retained body water in disorders in which plasma vasopressin concentrations are inappropriately high for any given plasma osmolality. Under these conditions, an aquaretic drug would be preferable over a conventional diuretic. The clinical efficacy of vaptans is in principle due to impaired vasopressin-regulated water reabsorption via the water channel aquaporin-2 (AQP2). Here, the effect of lixivaptan—a novel selective V2R antagonist—on the vasopressin-cAMP/PKA signaling cascade was investigated in mouse renal collecting duct cells expressing AQP2 (MCD4) and the human V2R. Compared to tolvaptan—a selective V2R antagonist indicated for the treatment of clinically significant hypervolemic and euvolemic hyponatremia—lixivaptan has been predicted to be less likely to cause liver injury. In MCD4 cells, clinically relevant concentrations of lixivaptan (100 nM for 1 h) prevented dDAVP-induced increase of cytosolic cAMP levels and AQP2 phosphorylation at ser-256. Consistent with this finding, real-time fluorescence kinetic measurements demonstrated that lixivaptan prevented dDAVP-induced increase in osmotic water permeability. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of lixivaptan and suggest that lixivaptan has the potential to become a safe and effective therapy for the treatment of disorders characterized by high plasma vasopressin concentrations and water retention.


2010 ◽  
Vol 224 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Valeria Rivarola ◽  
Pilar Flamenco ◽  
Luciana Melamud ◽  
Luciano Galizia ◽  
Paula Ford ◽  
...  

2009 ◽  
Vol 30 (1) ◽  
pp. 333-343 ◽  
Author(s):  
Cheng-Chun Wang ◽  
Chee Peng Ng ◽  
Hong Shi ◽  
Hwee Chien Liew ◽  
Ke Guo ◽  
...  

ABSTRACT Vesicle-associated-membrane protein 8 (VAMP8) is highly expressed in the kidney, but the exact physiological and molecular functions executed by this v-SNARE protein in nephrons remain elusive. Here, we show that the depletion of VAMP8 in mice resulted in hydronephrosis. Furthermore, the level of the vasopressin-responsive water channel aquaporin 2 (AQP2) was increased by three- to fivefold in VAMP8-null mice. Forskolin and [desamino-Cys1, D-Arg8]-vasopressin (DDAVP)-induced AQP2 exocytosis was impaired in VAMP8-null collecting duct cells. VAMP8 was revealed to colocalize with AQP2 on intracellular vesicles and to interact with the plasma membrane t-SNARE proteins syntaxin4 and syntaxin3, suggesting that VAMP8 mediates the regulated fusion of AQP2-positive vesicles with the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document