scholarly journals Nitric oxide dependent delay in post‐fatigue contractile recovery in isolated fast‐twitch muscle: The role of the S‐nitrosoglutathione reductase

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Natalie K Gilmore ◽  
Micheal C Hogan ◽  
Leonardo Nogueira
1992 ◽  
Vol 73 (6) ◽  
pp. 2713-2716 ◽  
Author(s):  
J. M. Ren ◽  
J. O. Holloszy

AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5′-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.


2002 ◽  
Vol 13 (7) ◽  
pp. 2347-2359 ◽  
Author(s):  
Andrea O'Neill ◽  
McRae W. Williams ◽  
Wendy G. Resneck ◽  
Derek J. Milner ◽  
Yassemi Capetanaki ◽  
...  

The sarcolemma of fast-twitch muscle is organized into “costameres,” structures that are oriented transversely, over the Z and M lines of nearby myofibrils, and longitudinally, to form a rectilinear lattice. Here we examine the role of desmin, the major intermediate filament protein of muscle in organizing costameres. In control mouse muscle, desmin is enriched at the sarcolemmal domains that lie over nearby Z lines and that also contain β-spectrin. In tibialis anterior muscle from mice lacking desmin due to homologous recombination, most costameres are lost. In myofibers from desmin −/− quadriceps, by contrast, most costameric structures are stable. Alternatively, Z line domains may be lost, whereas domains oriented longitudinally or lying over M lines are retained. Experiments with pan-specific antibodies to intermediate filament proteins and to cytokeratins suggest that control and desmin −/− muscles express similar levels of cytokeratins. Cytokeratins concentrate at the sarcolemma at all three domains of costameres when the latter are retained in desmin −/− muscle and redistribute with β-spectrin at the sarcolemma when costameres are lost. Our results suggest that desmin associates with and selectively stabilizes the Z line domains of costameres, but that cytokeratins associate with all three domains of costameres, even in the absence of desmin.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document