Adaptation of rat skeletal muscle to creatine depletion: AMP deaminase and AMP deamination

1992 ◽  
Vol 73 (6) ◽  
pp. 2713-2716 ◽  
Author(s):  
J. M. Ren ◽  
J. O. Holloszy

AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5′-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.

1996 ◽  
Vol 271 (4) ◽  
pp. C1250-C1255 ◽  
Author(s):  
M. Wada ◽  
T. Okumoto ◽  
K. Toro ◽  
K. Masuda ◽  
T. Fukubayashi ◽  
...  

Myosin of human skeletal muscles was analyzed by means of several electrophoretic techniques. Myosin heavy chain (HC)-IIa-and HC-IIb-based isomyosins were identified by pyrophosphate-polyacrylamide gel electrophoresis (PP-PAGE). The electrophoretic mobilities of these fast-twitch muscle isomyosins differed in the order HC-IIa triplets < HC-IIb triplets. To determine the subunit composition of myosin molecules that function in intact muscle, two-dimensional electrophoresis in which the first and second dimensions were PP-PAGE and sodium dodecyl sulfate-PAGE, respectively, was also performed. Slow-twitch muscle isomyosin contained, in addition to slow-twitch light chain (LC) and HC-I isoforms, appreciable amounts of LC-2f, HC-IIa, and HC-IIb isoforms, and fast-twitch muscle isomyosin consisted of LC-2s and HC-I isoforms as well as fast-twitch LC and HC isoforms. Without consideration of HC- and slow-twitch alkali LC heterodimers, at least 31 possible isomyosins are derived from these findings on the subunit composition of isomyosins in human skeletal muscle.


1985 ◽  
Vol 59 (1) ◽  
pp. 137-141 ◽  
Author(s):  
W. L. Sembrowich ◽  
J. J. Quintinskie ◽  
G. Li

The kinetics of calcium (Ca2+) uptake have been studied in mitochondria isolated from the different types of skeletal muscle. These studies demonstrate that the Ca2+ uptake properties of skeletal mitochondria are similar to those from liver and cardiac mitochondria. The Ca2+ carriers apparently have a high affinity for Ca2+ (Michaelis constants in the microM range). The relationship between Ca2+ uptake and initial Ca2+ concentration (10(-5) to 10(-7) M) is sigmoid in all mitochondria from the different skeletal muscle types suggesting that the uptake process is cooperative. Hill plots reveal coefficients of approximately 2 for mitochondria from fast-twitch muscle and 3.5 for slow-twitch muscle, adding further evidence to the concept that the uptake process is cooperative. An analysis of the potential role of mitochondria in the sequestration of Ca2+ during muscular contraction demonstrated that mitochondria from slow-twitch muscle of both rats and rabbits can potentially account for 100% of the relaxation rate at a low frequency of stimulation (5 Hz). In fast-twitch muscle, the mitochondria appear unable to play a significant role in muscle relaxation, particularly at stimulation frequencies that are considered in the normal physiological range. In summary, it appears that Ca2+ uptake by mitochondria from slow-twitch skeletal muscle has kinetic characteristics which make it important as a potential regulator of Ca2+ within the muscle cell under normal physiological conditions.


1997 ◽  
Vol 273 (3) ◽  
pp. E479 ◽  
Author(s):  
M C Sugden ◽  
M J Holness ◽  
L G Fryer

Glucose 6-phosphate (G-6-P)-independent glycogen synthase (GSa) and glycogen synthase (GS) total activities were measured in muscles from 24-h-starved rats. Intravenous glucose tolerance tests (0.5 g/kg body wt) were used to produce physiological, transient increases in insulin and glucose concentrations. GS activation occurred at approximately 10 min after glucose administration with peak activation at approximately 15 min. GS activation was reversed approximately 15 min after insulin and glucose concentrations had returned to basal. No differences existed between fast- and slow-twitch muscles. Hyperinsulinemia (approximately 160 mU/ml) in the absence of hyperglycemia elicited 1.5-fold activation of GS (P < 0.001) in two of three fast-twitch muscles but did not activate GS in slow-twitch muscles. Glucose infusion (glycemia approximately 8 mM; insulin approximately 40 mU/ml) significantly (P < 0.01) increased the percentage of total GS in the GSa form in four of the five muscles. Hyperglycemia with modest hyperinsulinemia evoked greater enhancement of GSa activity in fast-twitch muscle than insulin alone at a higher concentration (P < 0.01). In summary, hyperinsulinemia without hyperglycemia does not result in maximal activation of GS in fast-twitch muscle, and a rise in glycemia is obligatory for GS activation by insulin in slow-twitch muscle. The data support an important role for glycemia in modulating the response of skeletal muscle GS to insulin and provide further evidence of heterogeneity among skeletal muscle types.


1998 ◽  
Vol 274 (5) ◽  
pp. C1411-C1416 ◽  
Author(s):  
Peter C. Tullson ◽  
James W. E. Rush ◽  
Bé Wieringa ◽  
R. L. Terjung

Alterations in the competency of the creatine kinase system elicit numerous structural and metabolic compensations, including changes in purine nucleotide metabolism. We evaluated molecular and kinetic changes in AMP deaminase from skeletal muscles of mice deficient in either cytosolic creatine kinase alone (M-CK−/−) or also deficient in mitochondrial creatine kinase (CK−/−) compared with wild type. We found that predominantly fast-twitch muscle, but not slow-twitch muscle, from both M-CK−/− and CK−/− mice had much lower AMP deaminase; the quantity of AMP deaminase detected by Western blot was correspondingly lower, whereas AMP deaminase-1 ( AMPD1) gene expression was unchanged. Kinetic analysis of AMP deaminase from mixed muscle revealed negative cooperativity that was significantly greater in creatine kinase deficiencies. Treatment of AMP deaminase with acid phosphatase abolished negative cooperative behavior, indicating that a phosphorylation-dephosphorylation cycle may be important in the regulation of AMP deaminase.


1996 ◽  
Vol 270 (1) ◽  
pp. C76-C85 ◽  
Author(s):  
P. C. Tullson ◽  
K. W. Rundell ◽  
R. L. Sabina ◽  
R. L. Terjung

Dietary supplementation of the creatine analogue beta-guanidinopropionic acid (beta-GPA) decreases in vitro skeletal muscle AMP deaminase (AMP-D) activity in rats. Downregulation of AMP-D activity was progressive and greater in fast-twitch muscles (70-80%) than in the slow-twitch soleus muscle (approximately 50%). The loss in AMP-D activity had little effect on inosine 5'-monophosphate accumulation in mixed-fiber muscle with intense tetanic contractions. In contrast, inosine 5'-monophosphate formation was evident earlier in fast-twitch red and white fiber sections of creatine-depleted animals during intense twitch contractions, indicating that fast-twitch muscle of beta-GPA-treated rats buffers decreases in the ATP/ADPfree ratio via deamination, even though AMP-D activity is less. Isoforms of skeletal muscle AMP-D mRNAs in mixed-fiber muscle were not altered by feeding beta-GPA for up to 9 wk. Creatine depletion did not alter total immunoreactivity; however, a redistribution of AMP-D immunoreactivity from primarily an approximately 80-kDa form toward lower apparent molecular mass species (approximately 60 and approximately 56 kDa) was observed. Posttranslational changes in AMP-D appear related to changes in activity.


1993 ◽  
Vol 264 (5) ◽  
pp. C1246-C1251 ◽  
Author(s):  
P. G. Arabadjis ◽  
P. C. Tullson ◽  
R. L. Terjung

To determine the capacity for purine nucleotide degradation among skeletal muscle fiber types, we established energy-depleted conditions in muscles of the rat hindlimb by inducing muscle contraction during ischemia. After 5, 10, 15, or 20 min of ischemic contractions, representative muscle sections were freeze-clamped and analyzed for purine nucleotides, nucleosides, and bases. Fast-twitch muscle sections accumulated about fourfold more IMP than the slow-twitch red soleus muscle. Inosine begins to accumulate at < 0.5 mumol/g IMP in slow-twitch muscle and at approximately 2 mumol/g IMP in fast-twitch muscle. This suggests that inosine is formed intracellularly by 5'-nucleotidase acting on IMP and that the activity and/or substrate affinity of the 5'-nucleotidase present in slow-twitch muscle may be higher than in fast-twitch muscle. At similar concentrations of precursor IMP, slow-twitch muscle has a greater capacity for purine nucleoside formation and should be more dependent on salvage and de novo synthesis of purine for the maintenance of muscle adenine nucleotides. Fast-twitch muscles are better able to retain IMP for subsequent reamination due to their lower capacity to degrade IMP to inosine.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Kunihiro Sakuma ◽  
Akihiko Yamaguchi

Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1987 ◽  
Vol 253 (3) ◽  
pp. C426-C432 ◽  
Author(s):  
D. M. Whitlock ◽  
R. L. Terjung

Rat slow-twitch muscle, in contrast to fast-twitch muscle, maintains its ATP content near normal during intense stimulation conditions that produce rapid fatigue. An extensive depletion of adenine nucleotide content by the deamination of AMP to IMP + NH3, typical of fast-twitch muscle, does not occur. We evaluated whether this response of slow-twitch muscle could be simply due to failure of synaptic transmission or related to cellular conditions influencing enzyme activity. Stimulation of soleus muscles in situ via the nerve or directly in the presence of curare at 120 tetani/min for 3 min resulted in extensive fatigue but normal ATP contents. Thus the lack of ATP depletion must be related to cellular events distal to neuromuscular transmission. Even nerve and direct muscle stimulation (with curare) during ischemia did not cause a large depletion of ATP or a large elevation of lactate content (12.0 +/- 0.7 mumol/g), even though the decline in tension was essentially complete. However, if the same tension decline during ischemia was prolonged by stimulating for 10 min at 12 tetani/min a large decrease in ATP (2.24 +/- 0.09 mumol/g) and increase in IMP (2.47 +/- 0.16 mumol/g) and lactate (30.4 +/- 2.0 mumol/g) content occurred. Thus adenine nucleotide deamination to IMP can occur in slow-twitch muscle during specific contraction conditions. The cellular events leading to the activation of AMP deaminase require an intense contraction condition and may be related to acidosis caused by a high lactate content.


1980 ◽  
Vol 239 (1) ◽  
pp. E88-E95 ◽  
Author(s):  
K. E. Flaim ◽  
M. E. Copenhaver ◽  
L. S. Jefferson

The effects of acute (2-day) and long-term (7-day) diabetes on rates of protein synthesis, peptide-chain initiation, and levels of RNA were examined in rat skeletal muscles that are known to have differing proportions of the three fiber types: fast-twitch white, fast-twitch red, and slow-twitch red. Short-term diabetes resulted in a 15% reduction in the level of RNA in all the muscles studied and an impairment in peptide-chain initiation in muscles with mixed fast-twitch fibers. In contrast, the soleus, a skeletal muscle with high proportions of slow-twitch red fibers, showed little impairment in initiation. When the muscles were perfused as a part of the hemicorpus preparation, addition of insulin to the medium caused a rapid reversal of the block in initiation in mixed fast-twitch muscles but had no effect in the soleus. The possible role of fatty acids in accounting for these differences is discussed. Long-term diabetes caused no further reduction in RNA, but resulted in the development of an additional impairment to protein synthesis that also affected the soleus and that was not corrected by perfusion with insulin. The defect resulting from long-term diabetes may involve elongation or termination reactions.


Sign in / Sign up

Export Citation Format

Share Document