Myoblast Mitochondrial Adaptation to Chronic Alcohol Administration

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Danielle E. Levitt ◽  
Liz Simon ◽  
Patricia E. Molina
1994 ◽  
Vol 22 (3) ◽  
pp. 352S-352S
Author(s):  
VINOOD B. PATEL ◽  
JONATHAN R. SALISBURY ◽  
LORETA M. RODRIGUES ◽  
JOHN R. GRIFFITHS ◽  
PETER J. RICHARDSON ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mi Ran Choi ◽  
Jasmin Sanghyun Han ◽  
Yeung-Bae Jin ◽  
Sang-Rae Lee ◽  
In Young Choi ◽  
...  

Abstract Background Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sex-dependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcohol-treated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics.


2004 ◽  
Vol 97 (1) ◽  
pp. p9-p15 ◽  
Author(s):  
Alexandr Parlesak ◽  
Claus Pohl ◽  
J. Christian Bode ◽  
Christiane Bode

1987 ◽  
Vol 414 (2) ◽  
pp. 239-244 ◽  
Author(s):  
M.L. Michaelis ◽  
E.K. Michaelis ◽  
E.W. Nunley ◽  
N. Galton

Sign in / Sign up

Export Citation Format

Share Document