scholarly journals Genetic deletion of Regulators of G protein Signaling (RGS) protein activity enhances buprenorphine antinociception while limiting withdrawal behaviors associated with chronic administration

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Jeffery N Talbot ◽  
Crystal F Clemans ◽  
Melanie R Nicol ◽  
Ana Janjic ◽  
Xinyan Huang ◽  
...  
2018 ◽  
Vol 23 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Christopher R. Bodle ◽  
Josephine H. Schamp ◽  
Joseph B. O’Brien ◽  
Michael P. Hayes ◽  
Meng Wu ◽  
...  

Regulator of G protein signaling (RGS) proteins temporally regulate heterotrimeric G protein signaling cascades elicited by G protein–coupled receptor activation and thus are essential for cell homeostasis. The dysregulation of RGS protein expression has been linked to several pathologies, spurring discovery efforts to identify small-molecule inhibitors of these proteins. Presented here are the results of a high-throughput screening (HTS) campaign targeting RGS17, an RGS protein reported to be inappropriately upregulated in several cancers. A screen of over 60,000 small molecules led to the identification of five hit compounds that inhibit the RGS17-Gαo protein-protein interaction. Chemical and biochemical characterization demonstrated that three of these hits inhibited the interaction through the decomposition of parent compound into reactive products under normal chemical library storage/usage conditions. Compound substructures susceptible to decomposition are reported and the decomposition process characterized, adding to the armamentarium of tools available to the screening field, allowing for the conservation of resources in follow-up efforts and more efficient identification of potentially decomposed compounds. Finally, analogues of one hit compound were tested, and the results establish the first ever structure-activity relationship (SAR) profile for a small-molecule inhibitor of RGS17.


2004 ◽  
Vol 3 (6) ◽  
pp. 1454-1463 ◽  
Author(s):  
Gerrit C. Segers ◽  
Jerome C. Regier ◽  
Donald. L. Nuss

ABSTRACT We previously reported that the chestnut blight fungus Cryphonectria parasitica expresses at least three G-protein α subunits and that Gα subunit CPG-1 is essential for regulated growth, pigmentation, sporulation, and virulence. We now report the cloning and characterization of a C. parasitica regulator of G-protein signaling (RGS) protein, CPRGS-1. The phylogenetic relationship of CPRGS-1 to orthologs from other fungi was inferred and found to be generally concordant with species relationships based on 18S ribosomal sequences and on morphology. However, Hemiascomycotine RGS branch lengths in particular were longer than for their 18S sequence counterparts, which correlates with functional diversification in the signaling pathway. Deletion of cprgs-1 resulted in reduced growth, sparse aerial mycelium, and loss of pigmentation, sporulation, and virulence. Disruption of cprgs-1 was also accompanied by a severe posttranscriptional reduction in accumulation of CPG-1 and Gβ subunit CPGB-1 and severely reduced expression of the hydrophobin-encoding gene cryparin. The changes in phenotype, cryparin expression, and CPGB-1 accumulation resulting from cprgs-1 gene deletion were also observed in a strain containing a mutationally activated copy of CPG-1 but not in strains containing constitutively activated mutant alleles of the other two identified Gα subunits, CPG-2 and CPG-3. Furthermore, cprgs-1 transcript levels were increased in the activated CPG-1 strain but were unaltered in activated CPG-2 and CPG-3 strains. The results strongly suggest that CPRGS-1 is involved in regulation of Gα subunit CPG-1-mediated signaling and establish a role for a RGS protein in the modulation of virulence, conidiation, and hydrophobin synthesis in a plant pathogenic fungus.


2008 ◽  
Vol 7 (9) ◽  
pp. 1540-1548 ◽  
Author(s):  
Gui Shen ◽  
Yan-Li Wang ◽  
Amy Whittington ◽  
Lie Li ◽  
Ping Wang

ABSTRACT Crg1 and Crg2 are regulators of G-protein signaling homologs found in the human fungal pathogen Cryptococcus neoformans. Crg1 negatively regulates pheromone responses and mating through direct inhibition of Gα subunits Gpa2 and Gpa3. It has also been proposed that Crg2 has a role in mating, as genetic crosses involving Δcrg2 mutants resulted in formation of hyperfilaments. We found that mutation of Gpa2 and Gpa3 partially suppressed the hyperfilamentation, mutation of Gpa3 alleviated Δcrg2-specfic cell swelling, and mutation of the mitogen-activated protein kinase Cpk1 blocked both processes. These findings indicate that Gpa2 and Gpa3 function downstream of Crg2 and that Gpa3 is also epistatic to Crg2 in a Cpk1-dependent morphogenesis process linked to mating. Significantly, we found that Δcrg2 mutants formed enlarged capsules that mimic cells expressing a constitutively active GPA1(Q284L) allele and that the levels of intracellular cyclic AMP (cAMP) were also elevated, suggesting that Crg2 also negatively regulates the Gpa1-cAMP signaling pathway. We further showed that Crg2 interacted with Gpa3 and Gpa1, but not Gpa2, in a pulldown assay and that Crg2 maintained a higher in vitro GTPase-activating protein activity toward Gpa3 and Gpa1 than to Gpa2. Finally, we found that dysregulation of cAMP due to the Crg2 mutation attenuated virulence in a murine model of cryptococcosis. Taken together, our study reveals Crg2 as an RGS (regulator of G-protein signaling) protein of multiregulatory function, including one that controls mating distinctly from Crg1 and one that serves as a novel inhibitor of Gpa1-cAMP signaling.


2016 ◽  
Vol 216 (2) ◽  
pp. 562-575 ◽  
Author(s):  
Dieter Hackenberg ◽  
Michael R. McKain ◽  
Soon Goo Lee ◽  
Swarup Roy Choudhury ◽  
Tyler McCann ◽  
...  

2000 ◽  
Vol 14 (16) ◽  
pp. 2003-2014 ◽  
Author(s):  
Meng-Qiu Dong ◽  
Daniel Chase ◽  
Georgia A. Patikoglou ◽  
Michael R. Koelle

Regulators of G protein signaling (RGS proteins) inhibit heterotrimeric G protein signaling by activating G protein GTPase activity. Many mammalian RGS proteins are expressed in the brain and can act in vitro on the neural G protein Go, but the biological purpose of this multiplicity of regulators is not clear. We have analyzed all 13 RGS genes in Caenorhabditis elegans and found that three of them influence the aspect of egg-laying behavior controlled by Go signaling. A previously studied RGS protein, EGL-10, affects egg laying under all conditions tested. The other two RGS proteins, RGS-1 and RGS-2, act as Go GTPase activators in vitro but, unlike EGL-10, they do not strongly affect egg laying when worms are allowed to feed constantly. However, rgs-1; rgs-2double mutants fail to rapidly induce egg-laying behavior when refed after starvation. Thus EGL-10 sets baseline levels of signaling, while RGS-1 and RGS-2 appear to redundantly alter signaling to cause appropriate behavioral responses to food.


Sign in / Sign up

Export Citation Format

Share Document