scholarly journals The progesterone receptor antagonist mifepristone abolishes carotid sinus nerve response to hypoxia in rat pups.

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Vincent Joseph ◽  
Lalah Niane ◽  
Aida Bairam
1982 ◽  
Vol 53 (6) ◽  
pp. 1504-1511 ◽  
Author(s):  
E. N. Bruce ◽  
J. Mitra ◽  
N. S. Cherniack

We tested the hypothesis that phrenic and hypoglossal responses to progressive hypercapnia differ qualitatively because the CO2-related drive inputs to their respective motoneuron pools are different. The relative contributions of carotid sinus and central chemoreceptor inputs to hypoglossal and phrenic responses during hyperoxic hypercapnia were determined by comparing the two nerve activities during rebreathing runs done either before and after bilateral carotid sinus nerve (CSN) section, or without and with cooling of the intermediate, I(s), area on the ventral surface of the medulla. The studies were performed on chloralose-anesthetized, vagotomized, paralyzed cats. Cooling of the I(s) area impaired phrenic responsiveness to hypercapnia more than hypoglossal responsiveness, whereas CSN section had the opposite effect. Thus phrenic nerve response was more dependent on central chemoreceptor input than was the hypoglossal response, but hypoglossal response was more dependent on carotid sinus chemoreceptor input. We conclude that the phrenic and hypoglossal motoneuron pools each receive a different functional input from both the medullary and the carotid sinus chemoreceptors.


2010 ◽  
Vol 299 (1) ◽  
pp. R192-R205 ◽  
Author(s):  
Cécile A. Julien ◽  
Lalah Niane ◽  
Richard Kinkead ◽  
Aida Bairam ◽  
Vincent Joseph

We tested the hypothesis that exposure to neonatal intermittent hypoxia (n-IH) in rat pups alters central integrative processes following acute and intermittent peripheral chemoreceptor activation in adults. Newborn male rats were exposed to n-IH or normoxia for 10 consecutive days after birth. We then used both awake and anesthetized 3- to 4-mo-old rats to record ventilation, blood pressure, and phrenic and splanchnic nerve activities to assess responses to peripheral chemoreflex activation (acute hypoxic response) and long-term facilitation (LTF, long-term response after intermittent hypoxia). In anesthetized rats, phrenic and splanchnic nerve activities and hypoxic responses were also recorded with or without intact carotid body afferent signal (bilateral chemodenervation) or in response to electrical stimulations of the carotid sinus nerve. In awake rats, n-IH alters the respiratory pattern (higher frequency and lower tidal volume) and increased arterial blood pressure in normoxia, but the ventilatory response to repeated hypoxic cycles was not altered. In anesthetized rats, phrenic nerve responses to repeated hypoxic cycles or carotid sinus nerve stimulation were not altered by n-IH; however, the splanchnic nerve response was suppressed by n-IH compared with control. In control rats, respiratory LTF was apparent in anesthetized but not in awake animals. In n-IH rats, respiratory LTF was not apparent in awake and anesthetized animals. Following intermittent electrical stimulation, however, phrenic LTF was clearly present in n-IH rats, being similar in magnitude to controls. We conclude that, in adult n-IH rats: 1) arterial blood pressure is elevated, 2) peripheral chemoreceptor responses to hypoxia and its central integration are not altered, but splanchnic nerve response is suppressed, 3) LTF is suppressed, and 4) the mechanisms involved in the generation of LTF are still present but are masked most probably as the result of an augmented inhibitory response to hypoxia in the central nervous system.


1987 ◽  
Vol 18 (3) ◽  
pp. 437-445 ◽  
Author(s):  
Cheryl L. Chernicky ◽  
Karen L. Barnes ◽  
Carlos M. Ferrario ◽  
John P. Conomy

1989 ◽  
Vol 67 (5) ◽  
pp. 1754-1758 ◽  
Author(s):  
H. Kimura ◽  
M. Mikami ◽  
T. Kuriyama ◽  
Y. Fukuda

Effects on ventilatory responses to progressive isocapnic hypoxia of a synthetic potent progestin, chlormadinone acetate (CMA), were determined in the halothane-anesthetized male rat. Ventilation during the breathing of hyperoxic gas was largely unaffected by treatment with CMA when carotid chemoreceptor afferents were kept intact. The sensitivity to hypoxia evaluated by hyperbolic regression analysis of the response curve did not differ between the control and CMA groups. The reduction of ventilation after bilateral section of the carotid sinus nerve (CSN) in hyperoxia was less severe in CMA-treated than in untreated animals. Furthermore, the CMA-treated rats showed a larger increase in ventilation during the hypoxia test and a lower PO2 break point for ventilatory depression. Inhibition of hypoxic ventilatory depression by CMA persisted even after the denervation of CSN. We conclude that exogenous progestin likely protects regulatory mechanism(s) for respiration against hypoxic depression through a stimulating action independent of carotid chemoreceptor afferents and without a change in the sensitivity of the ventilatory response to hypoxia.


Sign in / Sign up

Export Citation Format

Share Document