ventilatory response to hypoxia
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 9)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulations of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in haemoglobin may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


2021 ◽  
Vol 346 ◽  
pp. 113852
Author(s):  
Matiram Pun ◽  
Andrew E. Beaudin ◽  
Jill K. Raneri ◽  
Todd J. Anderson ◽  
Patrick J. Hanly ◽  
...  

2019 ◽  
Vol 19 (1S) ◽  
pp. 26-27
Author(s):  
A A Klinnikova ◽  
G A Danilova ◽  
N P Alexandrova

With systemic inflammation, hypoxia, and an increase in the respiratory, a significant increase in the systemic level of pro-inflammatory cytokines is observed. Recently we demonstrated that elevated IL-1β level in blood reduces the ventilatory response to hypoxia. The aim of the present study was to examine the hypothesis that the respiratory effect of IL-1β may be mediating the NO-dependent mechanisms.The experiments were performed on anaesthetized rats. We studied the effects of intravenous administration of cytokine during inhibition of iNO-synthase. In order to we used aminoguanidine bicarbonate - specific inhibitor of iNOS, which was injected in the tail vein for 30 minutes before the administration of cytokine. During the hypoxic rebreathing experiments, was found that the increase of IL-1β level in blood weakens the respiratory response to hypoxia. The ventilatory, tidal volume and mean inspiratory flow responses decreased by 29%, 31% and 53% respectively. INO-synthase inhibitor pretreatment eliminated these respiratory effects of IL-1β. Thus the data indicate that the ability of IL-1β to reduce the ventilatory hypoxic response is mediated by the NO-dependent pathway.


2019 ◽  
Vol 131 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Suzanne J. L. Broens ◽  
Martijn Boon ◽  
Chris H. Martini ◽  
Marieke Niesters ◽  
Monique van Velzen ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background The ventilatory response to hypoxia is a life-saving chemoreflex originating at the carotid bodies that is impaired by nondepolarizing neuromuscular blocking agents. This study evaluated the effect of three strategies for reversal of a partial neuromuscular block on ventilatory control in 34 healthy male volunteers on the chemoreflex. The hypothesis was that the hypoxic ventilatory response is fully restored following the return to a train-of-four ratio of 1. Methods In this single-center, experimental, randomized, controlled trial, ventilatory responses to 5-min hypoxia (oxygen saturation, 80 ± 2%) and ventilation at hyperoxic isohypercapnia (end-tidal carbon dioxide concentration, 55 mmHg) were obtained at baseline, during rocuronium-induced partial neuromuscular block (train-of-four ratio of 0.7 measured at the adductor pollicis muscle by electromyography), and following reversal until the train-of-four ratio reached unity with placebo (n = 12), 1 mg neostigmine/0.5 mg atropine (n = 11), or 2 mg/kg sugammadex (n = 11). Results This study confirmed that low-dose rocuronium reduced the ventilatory response to hypoxia from 0.55 ± 0.22 (baseline) to 0.31 ± 0.21 l · min−1 · %−1 (train-of-four ratio, 0.7; P < 0.001). Following full reversal as measured at the thumb, there was persistent residual blunting of the hypoxic ventilatory response (0.45 ± 0.16 l · min−1 · %−1; train-of-four ratio, 1.0; P < 0.001). Treatment effect was not significant (analysis of covariance, P = 0.299) with chemoreflex impairment in 5 (45%) subjects following sugammadex reversal, in 7 subjects (64%) following neostigmine reversal, and in 10 subjects (83%) after spontaneous reversal to a train-of-four ratio of 1. Conclusions Despite full reversal of partial neuromuscular block at the thumb, impairment of the peripheral chemoreflex may persist at train-of-four ratios greater than 0.9 following reversal with neostigmine and sugammadex or spontaneous recovery of the neuromuscular block.


2019 ◽  
Vol 126 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jason H. Mateika ◽  
Dragana Komnenov ◽  
Alexandru Pop ◽  
Donald M. Kuhn

We examined the impact of serotonin (5-HT) on the frequency and duration of central apneic events and the frequency of accompanying arousals during nonrapid and rapid eye movement (NREM and REM, respectively) sleep across the light/dark cycle. Electroencephalography, electromyography, core body temperature, and activity were recorded for 24 h following implantation of telemeters in wild-type (Tph2+/+) and tryptophan hydroxylase 2 knockout (Tph2−/−) male mice. The frequency and duration of central apneic events were increased, the number of apneic events coupled to an arousal was decreased, and the ventilatory sensitivity to hypoxia and hypercapnia was decreased in the Tph2−/− compared with the Tph2+/+ mice during NREM sleep. Apnea frequency and duration were similar in the Tph2−/− and Tph2+/+ mice during REM sleep. The duration of apneic events during REM compared with NREM sleep was similar in the Tph2−/− mice. In contrast, the duration was greater during REM sleep in the Tph2+/+ mice. Our results also revealed that apnea frequency was greater during the light compared with the dark cycle. Circadian modulation of this variable was evident in both the Tph2−/− and Tph2+/+ mice during NREM and REM sleep. We conclude that depletion of 5-HT increases the frequency and duration of central apneic events, dampens arousal, and blunts the ventilatory response to hypoxia and hypercapnia during NREM sleep but is not essential for the circadian modulation of these variables. NEW & NOTEWORTHY The presence of serotonin (5-HT) in the central nervous system diminishes the frequency of central apneic events. This neuromodulator also moderates the duration of central apneic events and promotes arousal from central events if they occur during nonrapid eye movement (NREM) sleep. However, 5-HT is not responsible for the circadian modulation of apnea frequency, which we found was greater during NREM sleep in the light compared with the dark cycle.


2018 ◽  
Vol 2 (4) ◽  
pp. 689-697 ◽  
Author(s):  
Gustavo Gonzales

Adaptation or natural acclimatization results from the interaction between genetic variations and acclimatization resulting in individuals with ability to live and reproduce without problems at high altitudes. Testosterone is a hormone that increases erythropoiesis and inhibits ventilation. It could therefore, be associated to the adaptation to high altitudes. Excessive erythrocytosis, which in turn will develop chronic mountain sickness is caused by low arterial oxygen saturation and ventilatory inefficiency and blunted ventilatory response to hypoxia. Testosterone is elevated in natives at high altitude with excessive erythrocytosis (>21 g /dl hemoglobin in men and >19 g/dl in women). Natives from the Peruvian central Andes with chronic mountain sickness express gene SENP1 that enhances the activity of the androgen receptor. Results of the current investigations suggest that increase in serum testosterone and hemoglobin is not adequate for adaptation to high altitude.


Sign in / Sign up

Export Citation Format

Share Document