scholarly journals The Role of Nitric Oxide in the Urine Concentration Mechanism in Diabetic Rats

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Penelope Cipriani ◽  
Sunhye L. Kim ◽  
Janet D. Klein ◽  
Chad E. Denson ◽  
Jae H. Sim ◽  
...  
Reproduction ◽  
2007 ◽  
Vol 134 (4) ◽  
pp. 605-613 ◽  
Author(s):  
M C Pustovrh ◽  
A Jawerbaum ◽  
V White ◽  
E Capobianco ◽  
R Higa ◽  
...  

Matrix metalloproteinases (MMPs) play an important role in tissue remodeling that accompanies the rapid growth, differentiation, and structural changes of the placenta and several fetal organs. In the present study, we investigated whether the diabetic maternal environment may alter the regulatory homeostasis exerted by nitric oxide (NO) on MMPs activity in the feto-placental unit from rats at midgestation. We found that NADPH-diaphorase activity, which reflects the distribution and activity of NO synthases (NOS), was increased in both placenta and fetuses from diabetic rats when compared with controls. In addition, while a NO donor enhanced MMP2 and MMP9 activities, a NOS inhibitor reduced these activities in the maternal side of the placenta from control rats. This regulatory effect of NO was only observed on MMP9 in the diabetic group. On the other hand, the NO donor did not modify MMP2 and MMP9 activities, while the NOS inhibitor reduced MMP9 activity in the fetal side of both control and diabetic placentas. In the fetuses, MMP2 was enhanced by the NO donor and reduced by the NO inhibitor in both fetuses from control and diabetic rats. Overall, this study demonstrates that NO is able to modulate the activation of MMPs in the feto-placental unit, and provides supportive evidence that increased NOS activity leads to NO overproduction in the feto-placental unit from diabetic rats, an alteration closely related to the observed MMPs dysregulation that may have profound implications in the formation and function of the placenta and the fetal organs.


2007 ◽  
Vol 292 (3) ◽  
pp. R1158-R1164 ◽  
Author(s):  
Hong Zheng ◽  
Keshore R. Bidasee ◽  
William G. Mayhan ◽  
Kaushik P. Patel

Erectile dysfunction is a serious and common complication of diabetes mellitus. The proposed mechanisms for erectile dysfunction in diabetes include central and autonomic neuropathy, endothelial dysfunction, and smooth muscle dysfunction. The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in centrally mediated penile erection. This study was designed to examine the role of nitric oxide (NO) within the central nervous system component of the behavioral responses including erection in diabetic rats. N-methyl-d-aspartic acid (NMDA)-induced erection, yawning, and stretch through the PVN can be blocked by prior administration of NO synthase (NOS) blocker, l-NMMA, in freely moving, conscious male normal rats. Four weeks after streptozotocin (STZ) and vehicle injections, NMDA-induced erection, yawning, and stretch responses through the PVN are significantly blunted in diabetic rats compared with control rats. Examination of neuronal NOS (nNOS) protein by Western blot analysis indicated a reduced amount of nNOS protein in the PVN of rats with diabetes compared with control rats. Furthermore, restoring nNOS within the PVN by gene transfer using adenoviral transfection significantly restored the erectile and yawning responses to NMDA in diabetic rats. These data demonstrate that a blunted NO mechanism within the PVN may contribute to NMDA-induced erectile dysfunction observed in diabetes mellitus.


2012 ◽  
Vol 3 ◽  
Author(s):  
Penelope Cipriani ◽  
Sunhye L. Kim ◽  
Janet D. Klein ◽  
Jae H. Sim ◽  
Tobias N. von Bergen ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jasmin Chendi Li ◽  
Anida Velagic ◽  
Cheng Xue Qin ◽  
Mandy Li ◽  
Chen Huei Leo ◽  
...  

Introduction:Endothelial dysfunction is a major risk factor for several of the vascular complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction in the carotid artery remains unknown.Aim: To assess how diabetes affects the role of endogenous NO• and HNO in endothelium-dependent relaxation in rat isolated carotid arteries.Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD was continued for a further 12 weeks. Sham rats were fed standard chow and administered with citrate vehicle. After 14 weeks total, rats were anesthetized and carotid arteries collected to assess responses to the endothelium-dependent vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to assess the contribution of endothelium-dependent hyperpolarization to relaxation. The corresponding contribution of NOS-derived nitrogen oxide species to relaxation was assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger, were used to distinguish between NO• and HNO-mediated relaxation.Results: At study end, diabetic rats exhibited significantly retarded body weight gain and elevated blood glucose levels compared to sham rats. The sensitivity and the maximal relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats, indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating that NOS-derived nitrogen oxide species are the predominant endothelium-derived vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact.Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved. The potential for preserved HNO activity under pathological conditions that are associated with oxidative stress indicates that HNO donors may represent a viable therapeutic approach to the treatment of vascular dysfunction.


1997 ◽  
Vol 32 (6) ◽  
pp. 726-733 ◽  
Author(s):  
Hitoshi Suzuki ◽  
Tooru Shimosegawa ◽  
Akihiko Satoh ◽  
Kenji Kimura ◽  
Shuichi Ohara ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. F573-F583 ◽  
Author(s):  
Radko Komers ◽  
Jessie N. Lindsley ◽  
Terry T. Oyama ◽  
Kristen M. Allison ◽  
Sharon Anderson

Nitric oxide (NO) has been implicated in the pathogenesis of renal hemodynamic changes in diabetes mellitus. However, the contribution of nitric oxide synthase (NOS) isoforms to intrarenal production of NO in diabetes remains unknown. To explore the role of NOS1 in the control of renal hemodynamics in diabetes, we assessed renal responses to inhibition of NOS1 with S-methyl-l-thiocitrulline (SMTC; administered into the abdominal aorta) in moderately hyperglycemic streptozotocin-diabetic rats (D) and their nondiabetic (C) and normoglycemic diabetic counterparts. The contribution of other NOS isoforms was also evaluated by assessing the responses to nonspecific NOS inhibition [ N G-nitro-l-arginine methyl ester (l-NAME)] in SMTC-treated diabetic rats. The number of NOS1-positive cells in macula densa of D and C kidneys was also evaluated by immunohistochemistry. D rats demonstrated elevated glomerular filtration rate (GFR) compared with C. SMTC (0.05 mg/kg) normalized GFR in D but had no effect in C. SMTC-induced reduction of renal plasma flow (RPF) was similar in C and D. Normoglycemic diabetic rats demonstrated blunted renal hemodynamic responses to NOS1 inhibition compared with hyperglycemic animals. Mean arterial pressure was stable in all groups. l-NAME induced a further decrease in RPF, but not in GFR, in D rats treated with SMTC. Immunohistochemistry revealed increased numbers of NOS1-positive cells in D. These observations suggest that NOS1-derived NO plays a major role in the pathogenesis of renal hemodynamic changes early in the course of diabetes. NOS1 appears to be the most important isoform in the generation of hemodynamically active NO in this condition.


Metabolism ◽  
2005 ◽  
Vol 54 (6) ◽  
pp. 788-792 ◽  
Author(s):  
Kazushige Nakanishi ◽  
Shizuka Onuma ◽  
Mariko Higa ◽  
Yohko Nagai ◽  
Toshiki Inokuchi

1999 ◽  
Vol 276 (3) ◽  
pp. F340-F346 ◽  
Author(s):  
Axel C. Pflueger ◽  
Hartmut Osswald ◽  
Franklyn G. Knox

In rats with streptozotocin (STZ)-induced diabetes, the renal vasoconstrictor effect of adenosine is enhanced. We investigated the role of nitric oxide (NO) in the renal vascular response to exogenous and endogenous adenosine in control and STZ diabetic rats. Exogenous adenosine (0.01–100 nmol) injected into the abdominal aorta decreased renal blood flow (RBF) in a dose-dependent manner to a much greater extent in STZ rats than in control rats ( P < 0.001). Inhibition of NO synthesis with N ω-nitro-l-arginine (l-NNA, 30 μmol/kg iv) and with renal perfusion pressure controlled potentiated the adenosine-induced renal vasoconstriction to a significantly greater extent in control rats than in STZ rats. In control rats,l-NNA shifted the dose-response curve of exogenous adenosine-induced RBF reductions to the left by a factor of 32 [half-maximal effective dose (ED50), from 5.5 to 0.17 nmol adenosine, n = 6] and in STZ rats only by a factor of 4.6 (ED50, from 0.32 to 0.07 nmol adenosine, n = 6). The renal response to endogenous adenosine was assessed by the magnitude of the postocclusive reduction of RBF (POR) after a 30-s renal artery occlusion. POR was markedly enhanced in STZ rats (−67.8 ± 3.8%, P < 0.001) compared with control rats (−38.8 ± 4.3%).l-NNA markedly enhanced POR in control rats but did not increase POR in STZ rats. These findings demonstrate a greater potentiation of the adenosine-induced renal vasoconstriction in the presence ofl-NNA infusion in control rats compared with STZ rats. We conclude that the increased vasoconstrictor sensitivity of the diabetic renal vasculature to adenosine is caused by a defective NO-dependent renal vasodilation of the afferent arteriole in diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document