scholarly journals CTP: Phosphocholine cytidyltransferase alpha (CCTalpha) siRNA induce cell death in p53 negative and positive lung cancer cells

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Rukia Marijani ◽  
Barack Abonyo
2008 ◽  
Vol 104 (6) ◽  
pp. 2363-2373 ◽  
Author(s):  
R. Magrini ◽  
D. Russo ◽  
L. Ottaggio ◽  
G. Fronza ◽  
A. Inga ◽  
...  

2018 ◽  
Author(s):  
Chiawen Hsieh ◽  
Yun‑Wei Lin ◽  
Ching‑Hsein Chen ◽  
Wenjun Ku ◽  
Fuching Ma ◽  
...  

2009 ◽  
Vol 28 (5) ◽  
pp. 465-471 ◽  
Author(s):  
Tang Xiaojiang ◽  
Zhou Jinsong ◽  
Wang Jiansheng ◽  
Pan Chengen ◽  
Yang Guangxiao ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Onsurang Wattanathamsan ◽  
Rawikorn Thararattanobon ◽  
Ratchanee Rodsiri ◽  
Pithi Chanvorachote ◽  
Chanida Vinayanuwattikun ◽  
...  

AbstractThe posttranslational modifications (PTMs) of microtubules have been reported to play an important role in cancer aggressiveness, including apoptosis resistance. In this study, we aimed to investigate the biological role of microtubule PTMs in the regulation of paclitaxel responsiveness. The acetylated tubulin (Ace-tub) level was strongly associated with paclitaxel sensitivity, as observed in patient-derived primary lung cancer cells and xenografted immunodeficient mice. We showed that paclitaxel-resistant H460 lung cancer cells, generated by a stepwise increase in paclitaxel, exhibited markedly increased tubulin acetylation and consequently acquired paclitaxel resistance. Upregulation of tubulin acetylation by overexpression of α-tubulin acetyltransferase 1 wild-type (αTAT1wt), an enzyme required for acetylation, or by treatment with trichostatin A (TSA), a histone deacetylase 6 (HDAC6) inhibitor, significantly attenuated paclitaxel-induced apoptosis. Investigation of the underlying mechanism revealed that the levels of antiapoptotic Mcl-1 appeared to increase in αTAT1wt-overexpressing and TSA-treated cells compared to control cells, whereas the levels of other antiapoptotic regulatory proteins were unchanged. On the other hand, decreased tubulin acetylation by αTAT1 RNA interference downregulated Mcl-1 expression in patient-derived primary lung cancer and paclitaxel-resistant lung cancer cells. A microtubule sedimentation assay demonstrated that Mcl-1 binds to microtubules preferentially at Ace-type, which prolongs the Mcl-1 half-life (T1/2). Furthermore, immunoprecipitation analysis revealed that polyubiquitination of Mcl-1 was extensively decreased in response to TSA treatment. These data indicate that tubulin acetylation enhances the resistance to paclitaxel-induced cell death by stabilizing Mcl-1 and protecting it from ubiquitin–proteasome-mediated degradation.


2016 ◽  
Vol 26 (9) ◽  
pp. 2119-2123 ◽  
Author(s):  
Thanya Rukkijakan ◽  
Lukana Ngiwsara ◽  
Kriengsak Lirdprapamongkol ◽  
Jisnuson Svasti ◽  
Nared Phetrak ◽  
...  

2014 ◽  
Vol 32 (6) ◽  
pp. 209-217 ◽  
Author(s):  
Ang Qu ◽  
Hao Wang ◽  
Jinna Li ◽  
Junjie Wang ◽  
Jingjia Liu ◽  
...  

Author(s):  
K.M.A. Zinnah ◽  
Jae-Won Seol ◽  
Sang-Youel Park

Autophagy, an alternative cell death mechanism, is also termed programmed cell death type II. Autophagy in cancer treatment needs to be regulated. In our study, autophagy inhibition by desipramine or the autophagy inhibitor chloroquine (CQ) enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2 [death receptor (DR5)] expression and subsequently TRAIL-induced apoptosis in TRAIL-resistant A549 lung cancer cells. Genetic inhibition of DR5 substantially reduced desipramine-enhanced TRAIL-mediated apoptosis, proving that DR5 was required to increase TRAIL sensitivity in TRAIL-resistant cancer cells. Desipramine treatment upregulated p62 expression and promoted conversion of light chain 3 (LC3)-I to its lipid-conjugated form, LC3-II, indicating that autophagy inhibition occurred at the final stages of autophagic flux. Transmission electron microscopy analysis showed the presence of condensed autophagosomes, which resulted from the late stages of autophagy inhibition by desipramine. TRAIL, in combination with desipramine or CQ, augmented the expression of apoptosis-related proteins cleaved caspase-8 and cleaved caspase-3. Our results contributed to the understanding of the mechanism underlying the synergistic anti-cancer effect of desipramine and TRAIL and presented a novel mechanism of DR5 upregulation. These findings demonstrated that autophagic flux inhibition by desipramine potentiated TRAIL-induced apoptosis, suggesting that appropriate regulation of autophagy is required for sensitizing TRAIL-resistant cancer cells to TRAIL-mediated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document