human lung cancer cells
Recently Published Documents


TOTAL DOCUMENTS

1063
(FIVE YEARS 96)

H-INDEX

59
(FIVE YEARS 4)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Phatchanat Klaihmon ◽  
Chanchao Lorthongpanich ◽  
Pakpoom Kheolamai ◽  
Sudjit Luanpitpong ◽  
Surapol Issaragrisil

The hippo signaling pathway plays an essential role in controlling organ size and balancing tissue homeostasis. Its two main effectors, yes-associated protein (YAP) and WW domain-containing transcription regulator 1, WWTR1 or TAZ, have also been shown to regulate endothelial cell functions and angiogenesis. In this study, the functions of YAP and TAZ in human endothelial progenitor cells (EPCs) were investigated by a loss-of-function study using CRISPR/Cas9-mediated gene knockdown (KD). Depletion of either YAP or TAZ reduced EPC survival and impaired many of their critical functions, including migration, invasion, vessel-formation, and expression of pro-angiogenic genes. Notably, TAZ-KD EPCs exhibited more severe phenotypes in comparison to YAP-KD EPCs. Moreover, the conditioned medium derived from TAZ-KD EPCs reduced the survivability of human lung cancer cells and increased their sensitivity to chemotherapeutic agents. The overexpression of either wild-type or constitutively active TAZ rescued the impaired phenotypes of TAZ-KD EPCs and restored the expression of pro-angiogenic genes in those EPCs. In summary, we demonstrate the crucial role of Hippo signaling components, YAP and TAZ, in controlling several aspects of EPC functions that can potentially be used as a drug target to enhance EPC functions in patients.



2021 ◽  
Vol 28 ◽  
pp. 101139
Author(s):  
Elham Tajvidi ◽  
Nikta Nahavandizadeh ◽  
Maryam Pournaderi ◽  
Azin Zargar Pourrashid ◽  
Fatemeh Bossaghzadeh ◽  
...  


2021 ◽  
Vol 14 (11) ◽  
pp. 1169
Author(s):  
Hussein Hamad ◽  
Birgitte Brinkmann Olsen

Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations. Furthermore, we found that CBD activated the effector caspases 3/7, increased the expression of pro-apoptotic proteins, increased the levels of reactive oxygen species, as well as a leading to a loss of mitochondrial membrane potential in both populations. We also found that CBD decreased self-renewal, a hallmark of cancer stem cells. Overall, our results suggest that CBD is effective against the otherwise treatment-resistant cancer stem cells and joins a growing list of compounds effective against cancer stem cells. The effects and mechanisms of CBD in cancer stem cells should be further explored to find their Achilles heel.



Author(s):  
Xiaowen Hu ◽  
Kandasamy Saravanakumar ◽  
Anbazhagan Sathiyaseelan ◽  
Vinothkumar Rajamanickam ◽  
Myeong-Hyeon Wang




2021 ◽  
pp. molcanther.MCT-20-1095-A.2020
Author(s):  
Liyuan Yin ◽  
Yi Zhang ◽  
Lijuan Yin ◽  
Yan Ou ◽  
Michael S Lewis ◽  
...  


2021 ◽  
Vol 11 (19) ◽  
pp. 8866
Author(s):  
Myong Jin Lee ◽  
Geum Jin Kim ◽  
Myoung-Sook Shin ◽  
Jimin Moon ◽  
Sungjin Kim ◽  
...  

Chemical investigations of Aquimarina sp. MC085, which suppressed TGF-β-induced epithelial–mesenchymal transition (EMT) in A549 human lung cancer cells, led to the isolation of compounds 1–3. Structural characterization using spectroscopic data analyses in combination with Marfey’s analysis revealed that they were two diketopiperazines [cyclo(l-Pro-l-Leu) (1) and cyclo(l-Pro-l-Ile) (2)] and one N-phenethylacetamide (3). Cyclo(l-Pro-l-Leu) (1) and N-phenethylactamide (3) inhibited the TGF-β/Smad pathway and suppressed the metastasis of A549 cells by affecting TGF-β-induced EMT. However, cyclo(l-Pro-l-Ile) (2) downregulated mesenchymal factors via a non-Smad-mediated signaling pathway.



Author(s):  
Gang Li ◽  
Kesen Qiao ◽  
Xiaodan Xu ◽  
Chao Wang

Background: Cepharanthine (CEP) is an alkaloid extracted from Stephania cepharantha Hayata. This compound has been reported as a promising anti-tumor drug, although its potential molecular mechanism is not fully understood. Here, we studied the anti-tumor effect of CEP on human lung cancer cells and evaluated its molecular mechanism. Methods: The A549 cells were treated with CEP, the cell viability was measured by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay, and formation of autophagosome was observed by acridine orange staining under a fluorescence microscope. The cell migration and invasion were determined by wound healing and transwell assay. The protein levels of autophagy-associated molecules, light chain 3 (LC3)、p38、and phospho-p38 in A549 cells, were determined by western blot analysis. Result: The results showed that CEP inhibited cell proliferation, migration and invasion in A549 cells. Moreover, we found that CEP resulted in significant increases in levels of the autophagy marker protein LC3 in A549 cells. The number of intracellular acid dye follicular bright red fluorescence in A549 cells was significantly increased after CEP treatment. At the molecular levels, CEP markedly increased the phosphorylation of p38 in A549 cells. The knockdown of p38 expression by siRNA-p38 impaired the autophagy-regulating effect of CEP. Our results indicated that CEP-regulated autophagy was an anti-tumor effect and not a protective response to CEP. Conclusion: Taken together, these results demonstrated that CEP regulated autophagy by activating the p38 signaling pathway, which could be provided a potential application for preventing lung cancer.



Sign in / Sign up

Export Citation Format

Share Document