scholarly journals Expression and function of the Ca2+‐dependent SK3 K+ channel in mouse cortical collecting duct: Regulation by TRPV4

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Jonathan Berrout ◽  
Mykola Mamenko ◽  
Oleg L Zaika ◽  
Oleh Pochynyuk ◽  
Roger G O'Neil
1994 ◽  
Vol 267 (4) ◽  
pp. F592-F598 ◽  
Author(s):  
W. H. Wang ◽  
A. Cassola ◽  
G. Giebisch

We have employed the patch-clamp technique to investigate the role of the actin cytoskeleton in the modulation of the low-conductance K+ channel in the apical membrane of the rat cortical collecting duct (CCD). This K+ channel is inactivated by application of cytochalasin B or D, both compounds known to disrupt actin filaments. The effect of both cytochalasins, B and D, was fully reversible in cell-attached patches, but channel activity could not be fully restored in excised membrane patches. The effect of cytochalasins on channel activity was specific and resulted from depolymerization of the actin cytoskeleton, since application of 10 microM chaetoglobosin C, a cytochalasin analogue that does not depolymerize the actin filaments, had no effect on channel activity in inside-out patches. Addition of either actin monomers or of the polymerizing actin filaments in inside-out patches to the cytosolic medium had no effect on channel activity. This suggests that cytochalasin B- or D-induced inactivation of apical K+ channels is not caused by obstruction of the channel pore by actin. We also observed that channel inhibition by cytochalasin B or D could be blocked by pretreatment with 5 microM phalloidin, a compound that stabilizes actin filaments. We conclude that apical K+ channel activity depends critically on the integrity of the actin cytoskeleton.


Author(s):  
Gertrude Arthur ◽  
Jeffrey L. Osborn ◽  
Frederique B. Yiannikouris

Prorenin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin has been shown to be multifunctional. In addition to its role in the renin angiotensin system (RAS), PRR also transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney namely the macula densa, podocyte, proximal and distal convoluted tubule and the principal cells of the collecting duct and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.


2013 ◽  
Vol 305 (4) ◽  
pp. F427-F438 ◽  
Author(s):  
Susan M. Wall ◽  
Alan M. Weinstein

Renal intercalated cells mediate the secretion or absorption of Cl− and OH−/H+ equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl− absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl− transporter(s) are targeted by these diuretics is debated. While epithelial Na+ channel (ENaC) does not transport Cl−, it modulates Cl− transport probably by generating a lumen-negative voltage, which drives Cl− flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl− secretion via a type A intercalated cells. During ENaC blockade, Cl− is taken up across the basolateral membrane through the Na+-K+−2Cl− cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl− channel or an electrogenic exchanger). The mechanism of this apical Cl− secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl− absorption mediated by a Na+-dependent Cl−/HCO3− exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl− absorption varies between studies and probably depends on the treatment model employed. Cl− absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na+-independent Cl−/HCO3− exchanger pendrin. In the absence of pendrin [ Slc26a4 (−/−) or pendrin null mice], aldosterone-stimulated Cl− absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3−. This review summarizes mechanisms of Cl− transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.


1994 ◽  
Vol 267 (1) ◽  
pp. F114-F120 ◽  
Author(s):  
X. Zhou ◽  
C. S. Wingo

These studies examine the effect of ambient PCO2 on net bicarbonate (total CO2) absorption by the in vitro perfused cortical collecting duct (CCD) from K-replete rabbits and the mechanism responsible for this effect. Exposure to 10% CO2 increased net bicarbonate flux (total CO2 flux, JtCO2) by 1.8-fold (P < 0.005), and this effect was inhibited by luminal 10 microM Sch-28080, an H-K-adenosinetriphosphatase (H-K-ATPase) inhibitor. In contrast, exposure to 10% CO2 significantly decreased Rb efflux, and this decrement in Rb efflux was blocked by luminal 2 mM Ba, a K channel blocker. Thus transepithelial tracer Rb flux did not increase upon exposure to 10% CO2 as we have observed in this segment under K-restricted conditions. The observation that 10% CO2 increased net bicarbonate absorption without a change in absorptive Rb flux suggested that 10% CO2 increased apical K recycling. To test this hypothesis, we examined whether luminal Ba inhibited the stimulation of luminal acidification induced by 10% CO2. If apical K exit were necessary for full activation of proton secretion, then inhibiting K exit should indirectly affect the stimulation of JtCO2 by 10% CO2. In fact, the effect of 10% CO2 on JtCO2 in the presence of 2 mM luminal Ba was quantitatively indistinguishable from the effect of 10% CO2 on JtCO2 in the presence of 10 microM luminal Sch-28080.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 271 (3) ◽  
pp. F588-F594 ◽  
Author(s):  
C. M. Macica ◽  
Y. Yang ◽  
S. C. Hebert ◽  
W. H. Wang

Arachidonic acid (AA) has been shown to inhibit the activity of the low-conductance ATP-sensitive K+ channel in the apical membrane of the cortical collecting duct [W. Wang, A. Cassola, and G. Giebisch. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F554-F559, 1992]. ROMK1, a K+ channel derived from the rat renal outer medulla, shares many biophysical properties of the native low-conductance K+ channel, which is localized to the apical membranes of the cortical collecting duct and thick ascending limb. This study was designed to determine whether the ROMK channel maintains the property of AA sensitivity of the native low-conductance K+ channel. Experiments were conducted in Xenopus oocytes injected with cRNA encoding the ROMK1 channel by use of patch-clamp techniques. We have confirmed previous reports that the cloned ROMK1 has similar channel kinetics, high open probability, and inward slope conductance as the native low-conductance K+ channel, respectively. Addition of 5 microM AA to an inside-out patch resulted in reversible inhibition of channel activity at a concentration similar to the inhibitor constant for AA on the native K+ channel. The effect of AA on channel activity was preserved in the presence of 10 microM indomethacin, a cyclooxygenase inhibitor, 4 microM cinnamyl-3,4-dihydroxycyanocinnamate, a lipoxygenase inhibitor, and 4 microM 17-octadecynoic acid, an inhibitor of cytochrome P-450 monooxygenases, thus indicating that the effect of AA was not mediated by metabolites of AA. The effect did not appear to be the result of changes in membrane fluidity, since 5 microM eicosatetraynoic acid, an AA analogue that is a potent modulator of membrane fluidity, had no effect. Furthermore, the addition of AA to the outside of the patch also had no effect on channel activity. These results indicate that, like the native low-conductance channel, AA is able to directly inhibit ROMK1 channel activity.


2008 ◽  
Vol 294 (6) ◽  
pp. F1441-F1447 ◽  
Author(s):  
ZhiJian Wang ◽  
Yuan Wei ◽  
John R. Falck ◽  
Krishnam Raju Atcha ◽  
Wen-Hui Wang

We used the patch-clamp technique to study the effect of arachidonic acid (AA) on basolateral 18-pS K channels in the principal cell of the cortical collecting duct (CCD) of the rat kidney. Application of AA inhibited the 18-pS K channels in a dose-dependent manner and 10 μM AA caused a maximal inhibition. The effect of AA on the 18-pS K channel was specific because application of 11,14,17-eicosatrienoic acid had no effect on channel activity. Also, the inhibitory effect of AA on the 18-pS K channels was abolished by blocking cytochrome P-450 (CYP) epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH) but was not affected by inhibiting CYP ω-hydroxylase or cyclooxygenase. The notion that the inhibitory effect of AA was mediated by CYP epoxygenase-dependent metabolites was further supported by the observation that application of 100 nM 11,12-epoxyeicosatrienoic acid (EET) mimicked the effect of AA and inhibited the basolateral 18-pS K channels. In contrast, addition of either 5,6-, 8,9-, or 14,15-EET failed to inhibit the 18-pS K channels. Moreover, application of 11,12-EET was still able to inhibit the 18-pS K channels in the presence of MS-PPOH. This suggests that 11,12-EET is a mediator for the AA-induced inhibition of the 18-pS K channels. We conclude that AA inhibits basolateral 18-pS K channels by a CYP epoxygenase-dependent pathway and that 11,12-EET is a mediator for the effect of AA on basolateral K channels in the CCD.


2014 ◽  
Vol 307 (7) ◽  
pp. F833-F843 ◽  
Author(s):  
Yuan Wei ◽  
Yi Liao ◽  
Beth Zavilowitz ◽  
Jin Ren ◽  
Wen Liu ◽  
...  

The kidney adjusts K+ excretion to match intake in part by regulation of the activity of apical K+ secretory channels, including renal outer medullary K+ (ROMK)-like K+ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K+ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antagonistic manner, we sought to characterize the regulation of ROMK channels by the AT2R. Patch-clamp experiments revealed that ANG II increased ROMK channel activity in CCDs isolated from high-K+ (HK)-fed but not normal K+ (NK)-fed rats. This response was blocked by PD-123319, an AT2R antagonist, but not by losartan, an AT1R antagonist, and was mimicked by the AT2R agonist CGP-42112. Nitric oxide (NO) synthase is present in CCD cells that express ROMK channels. Blockade of NO synthase with N-nitro-l-arginine methyl ester and free NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt completely abolished ANG II-stimulated ROMK channel activity. NO enhances the synthesis of cGMP, which inhibits phosphodiesterases (PDEs) that normally degrade cAMP; cAMP increases ROMK channel activity. Pretreatment of CCDs with IBMX, a broad-spectrum PDE inhibitor, or cilostamide, a PDE3 inhibitor, abolished the stimulatory effect of ANG II on ROMK channels. Furthermore, PKA inhibitor peptide, but not an activator of the exchange protein directly activated by cAMP (Epac), also prevented the stimulatory effect of ANG II. We conclude that ANG II acts at the AT2R to stimulate ROMK channel activity in CCDs from HK-fed rats, a response opposite to that mediated by the AT1R in dietary K+-restricted animals, via a NO/cGMP pathway linked to a cAMP-PKA pathway.


2016 ◽  
Vol 311 (1) ◽  
pp. F12-F15 ◽  
Author(s):  
Xiao-Tong Su ◽  
Wen-Hui Wang

Kir4.1 is an inwardly rectifying potassium (K+) channel and is expressed in the brain, inner ear, and kidney. In the kidney, Kir4.1 is expressed in the basolateral membrane of the late thick ascending limb (TAL), the distal convoluted tubule (DCT), and the connecting tubule (CNT)/cortical collecting duct (CCD). It plays a role in K+ recycling across the basolateral membrane in corresponding nephron segments and in generating negative membrane potential. The renal phenotypes of the loss-function mutations of Kir4.1 include mild salt wasting, hypomagnesemia, hypokalemia, and metabolic alkalosis, suggesting that the disruption of Kir4.1 mainly impairs the transport in the DCT. Patch-clamp experiments and immunostaining demonstrate that Kir4.1 plays a predominant role in determining the basolateral K+ conductance in the DCT. However, the function of Kir4.1 in the TAL and CNT/CCD is not essential, because K+ channels other than Kir4.1 are also expressed. The downregulation of Kir4.1 in the DCT reduced basolateral chloride (Cl−) conductance, suppressed the expression of ste20 proline-alanine-rich kinase (SPAK), and decreased Na-Cl cotransporter (NCC) expression and activity. This suggests that Kir4.1 regulates NCC expression by the modulation of the Cl−-sensitive with-no-lysine kinase–SPAK pathway.


2000 ◽  
Vol 279 (1) ◽  
pp. F153-F160 ◽  
Author(s):  
Xiaoming Zhou ◽  
I. Jeanette Lynch ◽  
Shen-Ling Xia ◽  
Charles S. Wingo

We studied the activation of H+-K+-ATPase by CO2 in the renal cortical collecting duct (CCD) of K-restricted animals. Exposure of microperfused CCD to 10% CO2 increased net total CO2 flux ( J t CO2 ) from 4.9 ± 2.1 to 14.7 ± 4 pmol · mm−1· min−1 ( P < 0.05), and this effect was blocked by luminal application of the H+-K+-ATPase inhibitor Sch-28080. In the presence of luminal Ba, a K channel blocker, exposure to CO2 still stimulated J t CO2 from 6.0 ± 1.0 to 16.8 ± 2.8 pmol · mm−1 · min−1 ( P < 0.01), but peritubular application of Ba inhibited the stimulation. CO2substantially increased 86Rb efflux (a K tracer marker) from 93.1 ± 23.8 to 249 ± 60.2 nm/s ( P < 0.05). These observations suggest that during K restriction 1) the enhanced H+-K+-ATPase-mediated acidification after exposure to CO2 is dependent on a basolateral Ba-sensitive mechanism, which is different from the response of rabbits fed a normal-K diet, where activation of the H+-K+-ATPase by exposure to CO2 is dependent on an apical Ba-sensitive pathway; and 2) K/Rb absorption via the apical H+-K+-ATPase exits through a basolateral Ba-sensitive pathway. Together, these data are consistent with the hypothesis of cooperation between H+-K+-ATPase-mediated acidification and K exit pathways in the CCD that regulate K homeostasis.


1997 ◽  
Vol 273 (4) ◽  
pp. F663-F666 ◽  
Author(s):  
Marcelo Orias ◽  
Heino Velázquez ◽  
Freeman Tung ◽  
George Lee ◽  
Gary V. Desir

The K-selective channel, TOK1, recently identified in yeast, displays the unusual structural feature of having two putative pore regions, in contrast to all previously cloned K channels. Using the TOK1 pore regions as probes, we identified a human kidney cDNA encoding a 337-amino acid protein (hKCNK1) with four transmembrane segments and two pore regions containing the signature sequence of K channels. Amino acid identity to TOK1 is only 15% overall but 40% at the pores. Northern analysis indicates high expression of a 1.9-kb message in brain > kidney >> heart. Nephron segment localization, carried out in rabbit by reverse transcription-polymerase chain reaction, reveals that KCNK1 is expressed in cortical thick ascending limb, connecting tubule, and cortical collecting duct. It was not detected in the proximal tubule, medullary thick ascending limb, distal convoluted tubule, and glomerulus. We conclude that KCNK1 is a unique, double-pore, mammalian K channel, distantly related to the yeast channel TOK1, that is expressed in distal tubule and is a candidate to participate in renal K homeostasis.


Sign in / Sign up

Export Citation Format

Share Document