scholarly journals Ventricular Repolarization Pattern and Ischemic Arrhythmia Susceptibility at Different Follow‐Ups of Diabetes Mellitus

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Ian Azarov ◽  
Alexey Ovechkin ◽  
Marina Vaykshnorayte ◽  
Ksenia Sedova ◽  
Olesya Bernikova ◽  
...  
2012 ◽  
pp. 363-370
Author(s):  
M. A. VAYKSHNORAYTE ◽  
A. O. OVECHKIN ◽  
J. E. AZAROV

Cardiac repolarization is prolonged in diabetes mellitus (DM), however the distribution of repolarization durations in diabetic hearts is unknown. We estimated the ventricular repolarization pattern and its relation to the ECG phenomena in diabetic mice. Potential mapping was performed on the anterior ventricular surface in healthy (n=18) and alloxan-induced diabetic (n=12) mice with the 64-electrode array. Activation times, end of repolarization times, and activation-recovery intervals (ARIs) were recorded along with limb lead ECGs. ARIs were shorter in the left as compared to right ventricular leads (P<0.05). The global dispersion of repolarization, interventricular and apicobasal repolarization gradients were greater in DM than in healthy animals (P<0.03). The increased dispersion of repolarization and apicobasal repolarization gradient in DM correlated with the prolonged QTc and Tpeak-Tend intervals, respectively. The increased ventricular repolarization heterogeneity corresponded to the electrocardiographic markers was demonstrated in DM.


2017 ◽  
pp. 781-789 ◽  
Author(s):  
K. A. SEDOVA ◽  
J. E. AZAROV ◽  
N. V. ARTEYEVA ◽  
A. O. OVECHKIN ◽  
M. A. VAYKSHNORAYTE ◽  
...  

In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P<0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.


1998 ◽  
Vol 39 (5) ◽  
pp. 663-668 ◽  
Author(s):  
Harry N. Bawden ◽  
Aidan Stokes ◽  
Carol S. Camfield ◽  
Peter R. Camfield ◽  
Sonia Salisbury

Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


1971 ◽  
Vol 104 (4) ◽  
pp. 442-444 ◽  
Author(s):  
R. Tankel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document