scholarly journals Short‐ and Long‐term Regulation of Intestinal Na + /H + exchange by TLR4 in intestinal epithelial cells

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Jose Cabral ◽  
Daniela Grácio ◽  
Patricio Soares‐da‐Silva ◽  
Fernando Magro
2015 ◽  
Vol 309 (8) ◽  
pp. G703-G715 ◽  
Author(s):  
José Miguel Cabral ◽  
Daniela Grácio ◽  
Patrício Soares-da-Silva ◽  
Fernando Magro

Inappropriate activation of pattern recognition receptors has been described as a potential trigger in the development of inflammatory bowel disease (IBD). In this study, we evaluated the activity and expression of Na+/H+ exchanger (NHE) subtypes in T84 intestinal epithelial cells during Toll-like receptor 4 (TLR4) activation by monophosphoryl lipid A and TLR5 by flagellin. NHE activity and intracellular pH were evaluated by spectrofluorescence. Additionally, kinase activities were evaluated by ELISA, and siRNA was used to specifically inhibit adenylyl cyclase (AC). Monophosphoryl lipid A (MPLA) (0.01–50.00 μg/ml) and flagellin (10–500 ng/ml) inhibited NHE1 activity in a concentration-dependent manner (MPLA short term −25.2 ± 5.0%, long term −31.9 ± 4.0%; flagellin short term −14.9 ± 2.0%, long term −19.1 ± 2.0%). Both ligands triggered AC3, PKA, PLC, and PKC signal molecules. Long-term exposure to flagellin and MPLA induced opposite changes on NHE3 activity; flagellin increased NHE3 activity (∼10%) with overexpression of membrane protein, whereas MPLA decreased NHE3 activity (−17.3 ± 3.0%). MPLA and flagellin simultaneously had synergistic effects on NHE activity. MPLA and flagellin impaired pHi recovery after intracellular acidification. The simultaneous exposure to MPLA and flagellin induced a substantial pHi reduction (−0.55 ± 0.03 pH units). Activation of TLR4 and TLR5 exerts marked inhibition of NHE1 activity in intestinal epithelial cells. Transduction mechanisms set into motion during TLR4-mediated and long-term TLR5-mediated inhibition of NHE1 activity involve AC3, PKA, PLC, and PKC. However, short- and long-term TLR4 activation and TLR5 activation might use different signaling pathways. The physiological alterations on intestinal epithelial cells described here may be useful in the development of better IBD therapeutics.


2012 ◽  
Vol 302 (6) ◽  
pp. G618-G627 ◽  
Author(s):  
Amika Singla ◽  
Anoop Kumar ◽  
Shubha Priyamvada ◽  
Maliha Tahniyath ◽  
Seema Saksena ◽  
...  

DRA (downregulated in adenoma) or SLC26A3 is the major apical anion exchanger mediating Cl− absorption in intestinal epithelial cells. Disturbances in DRA function and expression have been implicated in diarrheal conditions such as congenital chloride diarrhea and inflammatory bowel diseases. Previous studies have shown that DRA is subject to regulation by short-term and transcriptional mechanisms. In this regard, we have recently shown that short-term treatment by lysophosphatidic acid (LPA), an important bioactive phospholipid, stimulates Cl−/HCO3−(OH−) exchange activity via an increase in DRA surface levels in human intestinal epithelial cells. However, the long-term effects of LPA on DRA at the level of gene transcription have not been examined. The present studies were aimed at investigating the effects of LPA on DRA function and expression as well as elucidating the mechanisms underlying its transcriptional regulation. Long-term LPA treatment increased the Cl−/HCO3− exchange activity in Caco-2 cells. LPA treatment (50–100 μM) of Caco-2 cells significantly stimulated DRA mRNA levels and DRA promoter activity (−1183/+114). This increase in DRA promoter activity involved the LPA2 receptor and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. Progressive deletions from −1183/+114 to −790/+114 abrogated the stimulatory effects of LPA, indicating that the −1183/−790 promoter region harbors LPA response elements. Utilizing EMSA and mutational studies, our results showed that LPA induced the DRA promoter activity in a c-Fos-dependent manner. LPA also increased the protein expression of c-Fos and c-Jun in Caco-2 cells. Furthermore, overexpression of c-Fos but not c-Jun enhanced the DRA promoter activity. This increase in DRA transcription in response to LPA indicates that LPA may act as an antidiarrheal agent and could be exploited for the treatment of diarrhea associated with inflammatory or infectious diseases of the gut.


2010 ◽  
Vol 138 (5) ◽  
pp. S-77
Author(s):  
Amy Colleran ◽  
Aideen E. Ryan ◽  
Angela Ogorman ◽  
Catherine H. Liptrot ◽  
Peter Dockery ◽  
...  

2000 ◽  
Vol 74 (12) ◽  
pp. 5597-5603 ◽  
Author(s):  
Kristine K. Macartney ◽  
Daniel C. Baumgart ◽  
Simon R. Carding ◽  
Jeffery O. Brubaker ◽  
Paul A. Offit

ABSTRACT We describe a method for long-term culture of primary small intestinal epithelial cells (IEC) from suckling mice. IEC were digested from intestinal fragments as small intact units of epithelium (organoids) by using collagenase and dispase. IEC proliferated from organoids on a basement-membrane-coated culture surface and remained viable for 3 weeks. Cultured IEC had the morphologic and functional characteristics of immature enterocytes, notably sustained expression of cytokeratin and alkaline phosphatase. Few mesenchymal cells were present in the IEC cultures. IEC were also cultured from adult BALB/c mice and expressed major histocompatibility complex (MHC) class II antigens for at least 48 h in vitro. Primary IEC supported the growth of rhesus rotavirus (RRV) to a greater extent than a murine small intestinal cell line, m-ICcl2. Cell-culture-adapted murine rotavirus strain EDIM infected primary IEC and m-ICcl2 cells to a lesser extent than RRV. Wild-type EDIM did not infect either cell type. Long-term culture of primary murine small intestinal epithelial cells provides a method to study (i) virus-cell interactions, (ii) the capacity of IEC to act as antigen-presenting cells using a wide variety of MHC haplotypes, and (iii) IEC biology.


2015 ◽  
Vol 21 (2) ◽  
pp. S354
Author(s):  
Jenny Zilberberg ◽  
Jennifer Matos ◽  
Eugenia Dziopa ◽  
Chao Jia ◽  
Hongjun Wang ◽  
...  

2016 ◽  
pp. jjw186 ◽  
Author(s):  
Shuji Hibiya ◽  
Kiichiro Tsuchiya ◽  
Ryohei Hayashi ◽  
Keita Fukushima ◽  
Nobukatsu Horita ◽  
...  

Author(s):  
Julian P. Heath ◽  
Buford L. Nichols ◽  
László G. Kömüves

The newborn pig intestine is adapted for the rapid and efficient absorption of nutrients from colostrum. In enterocytes, colostral proteins are taken up into an apical endocytotic complex of channels that transports them to target organelles or to the basal surface for release into the circulation. The apical endocytotic complex of tubules and vesicles clearly is a major intersection in the routes taken by vesicles trafficking to and from the Golgi, lysosomes, and the apical and basolateral cell surfaces.Jejunal tissues were taken from piglets suckled for up to 6 hours and prepared for electron microscopy and immunocytochemistry as previously described.


2001 ◽  
Vol 120 (5) ◽  
pp. A37-A37
Author(s):  
Y VANDEWAL ◽  
R PITMAN ◽  
R HERSHBERG ◽  
S COLGAN ◽  
S BEHAR ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A504-A504
Author(s):  
A NEUMANN ◽  
M DEPKAPRONDZINSKI ◽  
C WILHELM ◽  
K FELGENHAUER ◽  
T CASPRITZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document