scholarly journals Primary Murine Small Intestinal Epithelial Cells, Maintained in Long-Term Culture, Are Susceptible to Rotavirus Infection

2000 ◽  
Vol 74 (12) ◽  
pp. 5597-5603 ◽  
Author(s):  
Kristine K. Macartney ◽  
Daniel C. Baumgart ◽  
Simon R. Carding ◽  
Jeffery O. Brubaker ◽  
Paul A. Offit

ABSTRACT We describe a method for long-term culture of primary small intestinal epithelial cells (IEC) from suckling mice. IEC were digested from intestinal fragments as small intact units of epithelium (organoids) by using collagenase and dispase. IEC proliferated from organoids on a basement-membrane-coated culture surface and remained viable for 3 weeks. Cultured IEC had the morphologic and functional characteristics of immature enterocytes, notably sustained expression of cytokeratin and alkaline phosphatase. Few mesenchymal cells were present in the IEC cultures. IEC were also cultured from adult BALB/c mice and expressed major histocompatibility complex (MHC) class II antigens for at least 48 h in vitro. Primary IEC supported the growth of rhesus rotavirus (RRV) to a greater extent than a murine small intestinal cell line, m-ICcl2. Cell-culture-adapted murine rotavirus strain EDIM infected primary IEC and m-ICcl2 cells to a lesser extent than RRV. Wild-type EDIM did not infect either cell type. Long-term culture of primary murine small intestinal epithelial cells provides a method to study (i) virus-cell interactions, (ii) the capacity of IEC to act as antigen-presenting cells using a wide variety of MHC haplotypes, and (iii) IEC biology.

1999 ◽  
Vol 277 (1) ◽  
pp. G175-G182 ◽  
Author(s):  
Maryam Varedi ◽  
George H. Greeley ◽  
David N. Herndon ◽  
Ella W. Englander

The effects of a 60% body surface area thermal injury in rats on the morphology and proliferation of the epithelium of the small intestine and the in vitro effects of serum collected from scalded rats on intestinal epithelial cells were investigated. Scald injury caused significant reductions in duodenal villus width and crypt dimensions, villus enterocytes changed in shape from columnar to cuboidal, and the number of goblet cells decreased. The proportion of bromodeoxyuridine-labeled S phase cells in crypts was also diminished. In vitro, incubation of intestinal epithelial cells (IEC-6) with scalded rat serum (SRS) collected at either 12 or 24 h after injury caused a disruption in the integrity of the confluent culture and induced the appearance of large denuded areas. SRS also decreased DNA synthesis and delayed wound closure in an in vitro wound-healing model. The thermal injury-induced changes in intestinal mucosal morphology and epithelial cell growth characteristics described in this study may underlie, in part, the mechanism(s) involved in the diminished absorption of nutrients, increased intestinal permeability, and sepsis in patients with thermal injury.


1988 ◽  
Vol 254 (3) ◽  
pp. G355-G360 ◽  
Author(s):  
K. M. Carroll ◽  
T. T. Wong ◽  
D. L. Drabik ◽  
E. B. Chang

The role of extracellular matrix as a determinant of intestinal cell maturation was explored by growing a normal, but immature, rat small intestinal cell line (IEC-6) on basement membrane extract from Engelbreth-Holm-Swarm (EHS) sarcoma cells (ECM). Grown on plastic or glass, these cells are relatively immature and proliferate rapidly. In contrast, cells on ECM attached more rapidly, stopped proliferating, and rapidly organized into multicellular complex structures. Ultrastructurally, cells grown on ECM displayed significantly more mitochondria, rough endoplasmic reticulum, apical microvilli, and complex golgi apparatus, consistent with greater maturity and synthetic activity. By indirect immunofluorescence, sucrase, alkaline phosphatase, and cellular apolipoprotein B were present in cells grown on ECM only. In contrast to cells grown on glass, these cells also demonstrated Na-dependent glucose absorption, a function unique to mature villus cells (7). We conclude that the basement membrane may be a key determinant of intestinal epithelial cell maturation. The development of a mature villuslike intestinal cell in vitro may have wide application for future studies of induction and regulation of intestinal maturation and function.


Author(s):  
Muriel Gavin ◽  
Carol L. Wells ◽  
Stanley L. Erlandsen

Trophozoites or the free-swimming form of the intestinal protozoan, Giardia, resides within the host small intestine where they attach to the microvillous border by means of a grasping organelle, the ventral adhesive disc. Several mechanisms have been proposed to explain trophozoite attachment including contractile activity, microtubular coiling-uncoiling, hydryodynamic activity of the ventral flagella, and activated lectin binding.We have developed a model for investigating the mechanism of attachment of Giardia trophozoites to the microvillous border of cultured intestinal epithelial cells. Caco-2 cells, a human colonic intestinal cell line was grown for 14 days on glass cover slips in Delbeccos' modified Eagle's medium. Giardia trophozoites (Be-1;IP-0482:1) were cultured in TYI medium for 3 days, then harvested and resuspended in modified Eagle's medium prior to incubation for 30 minutes on Caco-2 cells. Coverslips were rinsed with warm Hanks balanced salt solution, fixed overnight in 3% glutaraldehye - 0.1 M cacodylate buffer, pH 7.2, dehydrated in ethanol, and critical point dried in CO2.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Federico Ghiselli ◽  
Barbara Rossi ◽  
Martina Felici ◽  
Maria Parigi ◽  
Giovanni Tosi ◽  
...  

Abstract Background Enterocytes exert an absorptive and protective function in the intestine, and they encounter many different challenging factors such as feed, bacteria, and parasites. An intestinal epithelial in vitro model can help to understand how enterocytes are affected by these factors and contribute to the development of strategies against pathogens. Results The present study describes a novel method to culture and maintain primary chicken enterocytes and their characterization by immunofluorescence and biomolecular approaches. Starting from 19-day-old chicken embryos it was possible to isolate viable intestinal cell aggregates that can expand and produce a self-maintaining intestinal epithelial cell population that survives until 12 days in culture. These cells resulted positive in immunofluorescence to Cytokeratin 18, Zonula occludens 1, Villin, and Occludin that are common intestinal epithelial markers, and negative to Vimentin that is expressed by endothelial cells. Cells were cultured also on Transwell® permeable supports and trans-epithelial electrical resistance, was measured. This value gradually increased reaching 64 Ω*cm2 7 days after seeding and it remained stable until day 12. Conclusions Based on these results it was confirmed that it is possible to isolate and maintain chicken intestinal epithelial cells in culture and that they can be suitable as in vitro intestinal model for further studies.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document