scholarly journals LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3K/AKT, and c-Fos-dependent pathway

2012 ◽  
Vol 302 (6) ◽  
pp. G618-G627 ◽  
Author(s):  
Amika Singla ◽  
Anoop Kumar ◽  
Shubha Priyamvada ◽  
Maliha Tahniyath ◽  
Seema Saksena ◽  
...  

DRA (downregulated in adenoma) or SLC26A3 is the major apical anion exchanger mediating Cl− absorption in intestinal epithelial cells. Disturbances in DRA function and expression have been implicated in diarrheal conditions such as congenital chloride diarrhea and inflammatory bowel diseases. Previous studies have shown that DRA is subject to regulation by short-term and transcriptional mechanisms. In this regard, we have recently shown that short-term treatment by lysophosphatidic acid (LPA), an important bioactive phospholipid, stimulates Cl−/HCO3−(OH−) exchange activity via an increase in DRA surface levels in human intestinal epithelial cells. However, the long-term effects of LPA on DRA at the level of gene transcription have not been examined. The present studies were aimed at investigating the effects of LPA on DRA function and expression as well as elucidating the mechanisms underlying its transcriptional regulation. Long-term LPA treatment increased the Cl−/HCO3− exchange activity in Caco-2 cells. LPA treatment (50–100 μM) of Caco-2 cells significantly stimulated DRA mRNA levels and DRA promoter activity (−1183/+114). This increase in DRA promoter activity involved the LPA2 receptor and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. Progressive deletions from −1183/+114 to −790/+114 abrogated the stimulatory effects of LPA, indicating that the −1183/−790 promoter region harbors LPA response elements. Utilizing EMSA and mutational studies, our results showed that LPA induced the DRA promoter activity in a c-Fos-dependent manner. LPA also increased the protein expression of c-Fos and c-Jun in Caco-2 cells. Furthermore, overexpression of c-Fos but not c-Jun enhanced the DRA promoter activity. This increase in DRA transcription in response to LPA indicates that LPA may act as an antidiarrheal agent and could be exploited for the treatment of diarrhea associated with inflammatory or infectious diseases of the gut.

2015 ◽  
Vol 309 (8) ◽  
pp. G703-G715 ◽  
Author(s):  
José Miguel Cabral ◽  
Daniela Grácio ◽  
Patrício Soares-da-Silva ◽  
Fernando Magro

Inappropriate activation of pattern recognition receptors has been described as a potential trigger in the development of inflammatory bowel disease (IBD). In this study, we evaluated the activity and expression of Na+/H+ exchanger (NHE) subtypes in T84 intestinal epithelial cells during Toll-like receptor 4 (TLR4) activation by monophosphoryl lipid A and TLR5 by flagellin. NHE activity and intracellular pH were evaluated by spectrofluorescence. Additionally, kinase activities were evaluated by ELISA, and siRNA was used to specifically inhibit adenylyl cyclase (AC). Monophosphoryl lipid A (MPLA) (0.01–50.00 μg/ml) and flagellin (10–500 ng/ml) inhibited NHE1 activity in a concentration-dependent manner (MPLA short term −25.2 ± 5.0%, long term −31.9 ± 4.0%; flagellin short term −14.9 ± 2.0%, long term −19.1 ± 2.0%). Both ligands triggered AC3, PKA, PLC, and PKC signal molecules. Long-term exposure to flagellin and MPLA induced opposite changes on NHE3 activity; flagellin increased NHE3 activity (∼10%) with overexpression of membrane protein, whereas MPLA decreased NHE3 activity (−17.3 ± 3.0%). MPLA and flagellin simultaneously had synergistic effects on NHE activity. MPLA and flagellin impaired pHi recovery after intracellular acidification. The simultaneous exposure to MPLA and flagellin induced a substantial pHi reduction (−0.55 ± 0.03 pH units). Activation of TLR4 and TLR5 exerts marked inhibition of NHE1 activity in intestinal epithelial cells. Transduction mechanisms set into motion during TLR4-mediated and long-term TLR5-mediated inhibition of NHE1 activity involve AC3, PKA, PLC, and PKC. However, short- and long-term TLR4 activation and TLR5 activation might use different signaling pathways. The physiological alterations on intestinal epithelial cells described here may be useful in the development of better IBD therapeutics.


2007 ◽  
Vol 293 (1) ◽  
pp. G146-G153 ◽  
Author(s):  
Ping Hua ◽  
Hua Xu ◽  
Jennifer K. Uno ◽  
Maciej A. Lipko ◽  
Jiali Dong ◽  
...  

Our previous studies have identified a minimal Sp1-driven promoter region (nt −36/+116) directing NHE2 expression in mouse renal epithelial cells. However, this minimal promoter region was not sufficient to support active transcription of NHE2 gene in the intestinal epithelial cells, suggesting the need for additional upstream regulatory elements. In the present study, we used nontransformed rat intestinal epithelial (RIE) cells as a model to identify the minimal promoter region and transcription factors necessary for the basal transcription of rat NHE2 gene in the intestinal epithelial cells. We identified a region within the rat NHE2 gene promoter located within nt −67/−43 upstream of transcription initiation site as indispensable for the promoter function in intestinal epithelial cells. Mutations at nt −56/−51 not only abolished the DNA-protein interaction in this region, but also completely abolished NHE2 gene promoter activity in RIE cells. Supershift assays revealed that Sp1 and Sp3 interact with this promoter region, but, contrary to the minimal promoter indispensable for renal expression of NHE2, both transcription factors expressed individually in Drosophila SL2 cells activated rat NHE2 gene promoter. Moreover, Sp1 was a weaker transactivator and when coexpressed in SL2 cells it reduced Sp3-mediated NHE2 basal promoter activity. Furthermore, DNase I footprinting confirmed that nt −58/−51 is protected by nuclear protein from RIE cells. We conclude that the mechanism of basal control of rat NHE2 gene promoter activity is different in the renal and intestinal epithelium, with Sp3 being the major transcriptional activator of NHE2 gene transcription in the intestinal epithelial cells.


1990 ◽  
Vol 258 (3) ◽  
pp. G454-G460 ◽  
Author(s):  
D. D. Ginty ◽  
M. Marlowe ◽  
P. H. Pekala ◽  
E. R. Seidel

The regulation of ornithine decarboxylase (ODC) was examined in an intestinal epithelial crypt cell line (IEC-6). Addition of fetal bovine serum or growth factors to quiescent preconfluent cells resulted in a 20- to 30-fold increase in the specific activity of ODC, which was maximal at approximately 4 h. In contrast, ODC mRNA levels either did not change or increased only twofold over the time period examined. The increased enzymatic activity was blocked by cycloheximide, putrescine, and the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-napthalinesulfonamide (W-7). Cycloheximide alone increased mRNA levels and potentiated the induction in response to serum, suggesting that protein synthesis is not required for the increase in mRNA accumulation. In contrast to its effect on ODC activity, W-7 was without effect on the serum-stimulated increase in ODC or c-fos mRNA levels. Putrescine decreased ODC activity, but not mRNA content, in a dose-dependent manner with an IC50 between 0.1 and 1.0 microM. Also, serum stimulation resulted in a threefold increase in the stability of the enzyme in the presence of cycloheximide; this effect was blocked by pretreatment with W-7. Enzymatic activity was paralleled by ODC protein content as determined by [3H] difluoromethylornithine binding. Finally, the induction of enzyme activity was due entirely to an increase in Vmax as no detectable change in Km for ornithine was detected. These results suggest that ODC is regulated at multiple levels by independent signaling pathways in cultured intestinal epithelial cells. Increased levels of active ODC protein and enzymatic activity are sensitive to W-7 and putrescine.(ABSTRACT TRUNCATED AT 250 WORDS)


2016 ◽  
Vol 310 (7) ◽  
pp. C542-C557 ◽  
Author(s):  
Jia Wang ◽  
Liang Han ◽  
James Sinnett-Smith ◽  
Li-Li Han ◽  
Jan V. Stevens ◽  
...  

Given the fundamental role of β-catenin signaling in intestinal epithelial cell proliferation and the growth-promoting function of protein kinase D1 (PKD1) in these cells, we hypothesized that PKDs mediate cross talk with β-catenin signaling. The results presented here provide several lines of evidence supporting this hypothesis. We found that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II (ANG II), a potent inducer of PKD activation, promoted endogenous β-catenin nuclear localization in a time-dependent manner. A significant increase was evident within 1 h of ANG II stimulation ( P < 0.01), peaked at 4 h ( P < 0.001), and declined afterwards. GPCR stimulation also induced a marked increase in β-catenin-regulated genes and phosphorylation at Ser552 in intestinal epithelial cells. Exposure to preferential inhibitors of the PKD family (CRT006610 or kb NB 142-70) or knockdown of the isoforms of the PKD family prevented the increase in β-catenin nuclear localization and phosphorylation at Ser552 in response to ANG II. GPCR stimulation also induced the formation of a complex between PKD1 and β-catenin, as shown by coimmunoprecipitation that depended on PKD1 catalytic activation, as it was abrogated by cell treatment with PKD family inhibitors. Using transgenic mice that express elevated PKD1 protein in the intestinal epithelium, we detected a marked increase in the localization of β-catenin in the nucleus of crypt epithelial cells in the ileum of PKD1 transgenic mice, compared with nontransgenic littermates. Collectively, our results identify a novel cross talk between PKD and β-catenin in intestinal epithelial cells, both in vitro and in vivo.


1998 ◽  
Vol 274 (1) ◽  
pp. C289-C294 ◽  
Author(s):  
Chandira K. Kumar ◽  
Toai T. Nguyen ◽  
Francis B. Gonzales ◽  
Hamid M. Said

We recently identified a cDNA clone from mouse small intestine, which appears to be involved in folate transport when expressed in Xenopus oocytes. The open reading frame of this clone is identical to that of the reduced folate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley, and K. H. Cowan. J. Biol. Chem. 269: 17–20, 1994). The characteristics of this cDNA clone [previously referred to as intestinal folate carrier 1 (IFC-1)] expressed in Xenopus oocytes, however, were found to be different from the characteristics of folate transport in native small intestinal epithelial cells. To further study these differences, we determined the characteristics of RFC when expressed in an intestinal epithelial cell line, IEC-6, and compared the findings to its characteristics when expressed in Xenopus oocytes. RFC was stably transfected into IEC-6 cells by electroporation; its cRNA was microinjected into Xenopus oocytes. Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFC was found to be fourfold higher than uptake in control sublines. This increase in folic acid and 5-MTHF uptake was inhibited by treating IEC-6/RFC cells with cholesterol-modified antisense DNA oligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity ( V max) of the uptake process [the apparent Michaelis-Menten constant ( K m) also changed (range was 0.31 to 1.56 μM), but no specific trend was seen]. In both IEC-6/RFC and control sublines, the uptake of both folic acid and 5-MTHF displayed 1) pH dependency, with a higher uptake at acidic pH 5.5 compared with pH 7.5, and 2) inhibition to the same extent by both reduced and oxidized folate derivatives. These characteristics are very similar to those seen in native intestinal epithelial cells. In contrast, RFC expressed in Xenopus oocytes showed 1) higher uptake at neutral and alkaline pH 7.5 compared with acidic pH 5.5 and 2) higher sensitivity to reduced compared with oxidized folate derivatives. Results of these studies demonstrate that the characteristics of RFC vary depending on the cell system in which it is expressed. Furthermore, the results may suggest the involvement of cell- or tissue-specific posttranslational modification(s) and/or the existence of an auxiliary protein that may account for the differences in the characteristics of the intestinal RFC when expressed in Xenopus oocytes compared with when expressed in intestinal epithelial cells.


2008 ◽  
Vol 295 (5) ◽  
pp. G965-G976 ◽  
Author(s):  
Elena V. Vassilieva ◽  
Kirsten Gerner-Smidt ◽  
Andrei I. Ivanov ◽  
Asma Nusrat

Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of β1-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, β1-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent β1-integrin internalization. However, β1-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized β1-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased β1-integrin endocytosis. Our data suggest that, in migrating IEC, β1-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.


1995 ◽  
Vol 308 (2) ◽  
pp. 665-671 ◽  
Author(s):  
T P Mayall ◽  
I Bjarnason ◽  
U Y Khoo ◽  
T J Peters ◽  
A J S Macpherson

Most mitochondrial genes are transcribed as a single large transcript from the heavy strand of mitochondrial DNA, and are subsequently processed into the proximal mitochondrial (mt) 12 S and 16 S rRNAs, and the more distal tRNAs and mRNAs. We have shown that in intestinal epithelial biopsies the steady-state levels of mt 12 S and 16 S rRNA are an order of magnitude greater than those of mt mRNAs. Fractionation of rat small intestinal epithelial cells on the basis of their maturity has shown that the greatest ratios of 12 S mt rRNA/cytochrome b mt mRNA or 12 S mt rRNA/cytochrome oxidase I mt mRNA are found in the surface mature enterocytes, with a progressive decrease towards the crypt immature enteroblasts. Cytochrome b and cytochrome oxidase I mt mRNA levels are relatively uniform along the crypt-villus axis, but fractionation experiments showed increased levels in the crypt base. The levels of human mitochondrial transcription factor A are also greater in immature crypt enteroblasts compared with mature villus enterocytes. These results show that the relative levels of mt rRNA and mRNA are distinctly regulated in intestinal epithelial cells according to the crypt-villus position and differentiation status of the cells, and that there are higher mt mRNA and mt TFA levels in the crypts, consistent with increased transcriptional activity during mitochondrial biogenesis in the immature enteroblasts.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Sign in / Sign up

Export Citation Format

Share Document