scholarly journals Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinson's disease

2018 ◽  
Vol 32 (11) ◽  
pp. 6100-6111 ◽  
Author(s):  
Huamin Xu ◽  
Xiaodong Liu ◽  
Jianjian Xia ◽  
Tianshu Yu ◽  
Yanan Qu ◽  
...  
2012 ◽  
Vol 119 (12) ◽  
pp. 1511-1514 ◽  
Author(s):  
Hideki Mochizuki ◽  
Toru Yasuda

Neuroscience ◽  
2017 ◽  
Vol 362 ◽  
pp. 141-151 ◽  
Author(s):  
Sonia Olmedo-Díaz ◽  
Héctor Estévez-Silva ◽  
Greger Orädd ◽  
Sara af Bjerkén ◽  
Daniel Marcellino ◽  
...  

2012 ◽  
Vol 47 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Camila L. Zold ◽  
Mariela V. Escande ◽  
Pablo E. Pomata ◽  
Luis A. Riquelme ◽  
M. Gustavo Murer

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yorka Muñoz ◽  
Carlos M. Carrasco ◽  
Joaquín D. Campos ◽  
Pabla Aguirre ◽  
Marco T. Núñez

Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson’s disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences—mitochondrial dysfunction, iron accumulation, and oxidative damage—generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson’s disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation—by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways—is a viable therapy for retarding this cycle.


Sign in / Sign up

Export Citation Format

Share Document