HIGH FREQUENCY JET VENTILATION VS CONTROLLED MECHANICAL VENTILATION IN ACUTE PULMONARY EMBOLISM

1984 ◽  
Vol 61 (3) ◽  
pp. A108-A108
Author(s):  
I. P. Murray ◽  
M. S. Mikhail ◽  
M. J. Banner ◽  
J. H. Modell
2000 ◽  
Vol 92 (1) ◽  
pp. 24-24 ◽  
Author(s):  
Jacques-Andre Romand ◽  
Miriam M. Treggiari-Venzi ◽  
Thierry Bichel ◽  
Peter M. Suter ◽  
Michael R. Pinsky

Background The purpose of this prospective study was to examine the effect on cardiac performance of selective increases in airway pressure at specific points of the cardiac cycle using synchronized high-frequency jet ventilation (sync-HFJV) delivered concomitantly with each single heart beat compared with controlled mechanical ventilation in 20 hemodynamically stable, deeply sedated patients immediately after coronary artery bypass graft. Methods Five 30-min sequential ventilation periods were used interspersing controlled mechanical ventilation with sync-HFJV twice to control for time and sequencing effects. Sync-HFJV was applied using a driving pressure, which generated a tidal volume resulting in gas exchanges close to those obtained on controlled mechanical ventilation and associated with the maximal mixed venous oxygen saturation. Hemodynamic variables including cardiac output, mixed venous oxygen saturation and vascular pressures were recorded at the end of each ventilation period. Results The authors found that in 20 patients, hemodynamic changes induced by controlled mechanical ventilation and by sync-HFJV were similar. Cardiac index did not change (mean +/- SD for controlled mechanical ventilation: 2.6 +/- 0.7 l x min(-1) x m(-2); for sync-HFJV: 2.7 +/- 0.7 l x min(-1) x m(-2); P value not significant). This observation persisted after stratification according to baseline left-ventricular contractility, as estimated by ejection fraction. Conclusions The authors conclude that after coronary artery bypass graft, if gas-exchange values are maintained within normal range, sync-HFJV does not result in more favorable hemodynamic support than controlled mechanical ventilation. These findings contrast with the beneficial effects of sync-HFJV, resulting in marked hypocapnia, on cardiac performance observed in patients with terminal left-ventricular failure.


PEDIATRICS ◽  
1986 ◽  
Vol 77 (4) ◽  
pp. 608-613
Author(s):  
Mark C. Mammel ◽  
Janice P. Ophoven ◽  
Patrick K. Lewallen ◽  
Margaret J. Gordon ◽  
Marylyn C. Sutton ◽  
...  

Recent reports linking serious tracheal injuries to various forms of high-frequency ventilation prompted this study. We compared the tracheal histopathology seen following standard-frequency, conventional mechanical ventilation with that seen following high-frequency, conventional mechanical ventilation, and two different forms of high-frequency jet ventilation. Twenty-six adult cats were examined. Each was mechanically ventilated for 16 hours. Seven received standard-frequency, conventional mechanical ventilation at 20 breaths per minute. Seven received high-frequency, conventional mechanical ventilation at 150 breaths per minute. Six received high-frequency jet ventilation at 250 breaths per minute via the Instrument Development Corporation VS600 jet ventilator (IDC). Six received high-frequency jet ventilation at 400 breaths per minute via the Bunnell Life Pulse jet ventilator (BLP). A semiquantitative histopathologic scoring system graded tracheal tissue changes. All forms of high-frequency ventilation produced significant inflammation (erosion, necrosis, and polymorphonuclear leukocyte infiltration) in the trachea in the region of the endotracheal tube tip. Conventional mechanical ventilation produced less histopathology than any form of high-frequency ventilation. Of all of the ventilators examined, the BLP, the ventilator operating at the fastest rate, produced the greatest loss of surface cilia and depletion of intracellular mucus. IDC high-frequency jet ventilation and high-frequency, conventional mechanical ventilation produced nearly identical histologic injuries. In this study, significant tracheal damage occurred with all forms of high-frequency ventilation. The tracheal damage seen with high-frequency, conventional mechanical ventilation suggests that ventilator frequency, not delivery system, may be responsible for the injuries.


Sign in / Sign up

Export Citation Format

Share Document