Spinal Antinociceptive Action of an N-Type Voltage-dependent Calcium Channel Blocker and the Synergistic Interaction with Morphine

1996 ◽  
Vol 84 (3) ◽  
pp. 636-643 ◽  
Author(s):  
Keiichi Omote ◽  
Mikito Kawamata ◽  
Osamu Satoh ◽  
Hiroshi Iwasaki ◽  
Akiyoshi Namiki

Background Four different voltage-dependent calcium channels (L-, N-, T-, and P-types) are distinguished in the central nervous system. Both L- and N-type calcium channels have been implicated in the release of neurotransmitters from sensory neurons in the spinal cord. It has been demonstrated that intrathecal L-type calcium channel blockers, which alone do not exhibit any antinociceptive effects, potentiate the antinociceptive effect of intrathecal morphine. The current study was designed to investigate the antinociceptive effects of the intrathecally administered N-type calcium channel blocker, omega-conotoxin GVIA (omega-CgTx). The interaction between morphine and omega-CgTx at the level of the spinal cord also was examined. Methods In male Sprague-Dawley rats, lumbar intrathecal catheters were chronically implanted. Tail flick and mechanical paw pressure tests were used to assess thermal and mechanical nociceptive thresholds, respectively. Morphine, omega-CgTx, or a combination of morphine and omega-CgTx was administered intrathecally, and the nociceptive thresholds were determined. Isobolographic analyses were used to define the nature of the functional interactions between morphine and omega-CgTx. Results Intrathecal omega-CgTx produced antinociception in a dose- and time-dependent manner. Isobolographic analyses revealed that intrathecal omega-CgTx and morphine interacted synergistically in both nociceptive tests. Conclusions This study indicates the importance of the N-type calcium channel in the spinal cord on nociception and suggests the functional interaction between the N-type calcium channel blocker and opioid at the level of the spinal cord.

2001 ◽  
Vol 85 (1) ◽  
pp. 164-168 ◽  
Author(s):  
Jijiang Wang ◽  
Mustapha Irnaten ◽  
David Mendelowitz

Whole cell currents and miniature glutamatergic synaptic events (minis) were recorded in vitro from cardiac vagal neurons in the nucleus ambiguus using the patch-clamp technique. We examined whether voltage-dependent calcium channels were involved in the nicotinic excitation of cardiac vagal neurons. Nicotine evoked an inward current, increase in mini amplitude, and increase in mini frequency in cardiac vagal neurons. These responses were inhibited by the nonselective voltage-dependent calcium channel blocker Cd (100 μM). The P-type voltage-dependent calcium channel blocker agatoxin IVA (100 nM) abolished the nicotine-evoked responses. Nimodipine (2 μM), an antagonist of L-type calcium channels, inhibited the increase in mini amplitude and frequency but did not block the ligand gated inward current. The N- and Q-type voltage-dependent calcium channel antagonists conotoxin GVIA (1 μM) and conotoxin MVIIC (5 μM) had no effect. We conclude that the presynaptic and postsynaptic facilitation of glutamatergic neurotransmission to cardiac vagal neurons by nicotine involves activation of agatoxin-IVA-sensitive and possibly L-type voltage-dependent calcium channels. The postsynaptic inward current elicited by nicotine is dependent on activation of agatoxin-IVA-sensitive voltage-dependent calcium channels.


1996 ◽  
Vol 270 (2) ◽  
pp. G287-G290 ◽  
Author(s):  
A. W. Mangel ◽  
L. Scott ◽  
R. A. Liddle

To examine the role of calcium channels in depolarization-activated cholecystokinin (CCK) release, studies were performed in an intestinal CCK-secreting cell line, STC-1. Blockade of potassium channels with barium chloride (5 mM) increased the release of CCK by 374.6 +/- 46.6% of control levels. Barium-induced secretion was inhibited by the L-type calcium-channel blocker, nicardipine. Nicardipine (10(-9)-10(-5) M) produced a dose-dependent inhibition in barium-stimulated secretion with a half-maximal inhibition (IC50) value of 0.1 microM. A second L-type calcium-channel blocker, diltiazem (10(-9)-10(-4) M), also inhibited barium-induced CCK secretion with an IC50 value of 5.1 microM. By contrast, the T-type calcium-channel blocker, nickel chloride (10(-7)-10(-8) M), failed to significantly inhibit barium-induced CCK secretion. To further evaluate a role for L-type calcium channels in the secretion of CCK, the effects of the L-type calcium channel opener, BAY K 8644, were examined. BAY K 8644 (10(-8)-10(-4) M) produced a dose-dependent stimulation in CCK release with a mean effective concentration value of 0.2 microM. Recordings of single-channel currents from inside-out membrane patches showed activation of calcium channels by BAY K 8644 (1 microM), with a primary channel conductance of 26.0 +/- 1.2 pS. It is concluded that inhibition of potassium channel activity depolarizes the plasma membrane, thereby activating L-type, but not T-type, calcium channels. The corresponding influx of calcium serves to trigger secretion of CCK.


2003 ◽  
pp. 425-432 ◽  
Author(s):  
T. Winkler ◽  
Hari Shanker Sharma ◽  
E. Stålberg ◽  
R. D. Badgaiyan ◽  
T. Gordh ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 1887-1893
Author(s):  
Gouher Banu Shaikh ◽  
Surekha Hippargi ◽  
Dewan S. A Majid ◽  
Kusal K Das

Background: Cilnidipine belongs to fourth generation dihydropyridine calcium channel blocker (CCB). It is a dual L & N-type CCB. L- type calcium channels are present on the vascular smooth muscle and N-type calcium channels are present on the presynaptic nerve terminals. Cilnidipine has a vasodilating effect, its action is slow and long lasting. Aim and objectives: Aim of present study was to demonstrate the beneficial effects of cilnidipine on the hypertensive renal injury rats. And our objectives is to assess renal injury parameters (Proteinuria, Creatinine clearance, Renal fibrosis/glomerulosclerosis) in response to chronic NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) treatment in the presence or absence of cilnidipine treatment. Material and methods: Male albino Wister rats were procured from institutional animal house, divided into 4 groups (n=6 in each group). Group1 treated with vehicle (control), group2 treated with cilnidipine, group3 treated with L-NAME, group4 treated with L-NAME & cilnidipine. 24 hour urinary protein and creatinine clearance were measured. Serum urea and creatinine levels are also measured. Urinary and serum Angiotensin II levels were measured. Histopathological examination of kidneys was performed. Results: Our results demonstrate that treatment with cilnidipine (group4) there is reduction in 24hr urinary protein, improvement in creatinine clearance. We observed there was renal glomerulosclerosis and tubular degeneration of kidney tubules in group3 rats and reduction of renal injury in group4 rats. We also found reduced urinary and serum Angiotensin II level in cilnidipine treated (group 4) rats. Conclusion: These findings indicated that cilnidipine act as renoprotective agent and reduces glomerular damage in L-NAME induced hypertensive rats.


2015 ◽  
Vol 1605 ◽  
pp. 12-21 ◽  
Author(s):  
Shuzhuo Zhang ◽  
Lujia Yang ◽  
Kang Zhang ◽  
Xiaoyan Liu ◽  
Weiwei Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document